A159777 Positive numbers y such that y^2 is of the form x^2+(x+167)^2 with integer x.
145, 167, 197, 673, 835, 1037, 3893, 4843, 6025, 22685, 28223, 35113, 132217, 164495, 204653, 770617, 958747, 1192805, 4491485, 5587987, 6952177, 26178293, 32569175, 40520257, 152578273, 189827063, 236169365, 889291345, 1106393203
Offset: 1
Examples
(-24, a(1)) = (-24, 145) is a solution: (-24)^2 + (-24+167)^2 = 576 + 20449 = 21025 = 145^2. (A130608(1), a(2)) = (0, 167) is a solution: 0^2 + (0+167)^2 = 27889 = 167^2. (A130608(3), a(4)) = (385, 673) is a solution: 385^2 + (385+167)^2 = 148225 + 304704 = 452929 = 673^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..3900
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[145,167,197,673,835,1037]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 21 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1}, {145,167,197,673,835,1037}, 50] (* G. C. Greubel, May 21 2018 *)
-
PARI
{forstep(n=-24, 10000000, [1, 3], if(issquare(2*n^2+334*n+27889, &k), print1(k, ",")))};
Formula
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=145, a(2)=167, a(3)=197, a(4)=673, a(5)=835, a(6)=1037.
G.f.: (1-x)*(145+312*x+509*x^2+312*x^3+145*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 167*A001653(k) for k >= 1.
Comments