cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159833 a(n) = n^2*(n^2 + 15)/4.

Original entry on oeis.org

0, 4, 19, 54, 124, 250, 459, 784, 1264, 1944, 2875, 4114, 5724, 7774, 10339, 13500, 17344, 21964, 27459, 33934, 41500, 50274, 60379, 71944, 85104, 100000, 116779, 135594, 156604, 179974, 205875, 234484, 265984, 300564, 338419, 379750, 424764
Offset: 0

Views

Author

R. J. Mathar, Apr 23 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^2 * (n^2 + 15)/4: n in [0..40]]; // Vincenzo Librandi, Dec 18 2012
    
  • Maple
    seq(n^2*(n^2+15)/4,n=0..80)
  • Mathematica
    CoefficientList[Series[-x*(1 + x)*(4*x^2 - 5*x + 4)/(x-1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,4,19,54,124},40] (* Harvey P. Dale, May 30 2016 *)
  • PARI
    for(n=0, 30, print1(n^2*(n^2 +15)/4, ", ")) \\ G. C. Greubel, May 19 2018

Formula

a(n) = A008488(n+1)-2 = 4 - 15*A000292(n+1) + 6*A000332(n+4) + 20*A000217(n+1) - 15*(n+1).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: -x*(1+x)*(4*x^2-5*x+4)/(x-1)^5.
E.g.f.: x*(16 +22*x +6*x^2 +x^3)*exp(x)/4. - G. C. Greubel, May 19 2018