A159833 a(n) = n^2*(n^2 + 15)/4.
0, 4, 19, 54, 124, 250, 459, 784, 1264, 1944, 2875, 4114, 5724, 7774, 10339, 13500, 17344, 21964, 27459, 33934, 41500, 50274, 60379, 71944, 85104, 100000, 116779, 135594, 156604, 179974, 205875, 234484, 265984, 300564, 338419, 379750, 424764
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n^2 * (n^2 + 15)/4: n in [0..40]]; // Vincenzo Librandi, Dec 18 2012
-
Maple
seq(n^2*(n^2+15)/4,n=0..80)
-
Mathematica
CoefficientList[Series[-x*(1 + x)*(4*x^2 - 5*x + 4)/(x-1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *) LinearRecurrence[{5,-10,10,-5,1},{0,4,19,54,124},40] (* Harvey P. Dale, May 30 2016 *)
-
PARI
for(n=0, 30, print1(n^2*(n^2 +15)/4, ", ")) \\ G. C. Greubel, May 19 2018
Formula
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: -x*(1+x)*(4*x^2-5*x+4)/(x-1)^5.
E.g.f.: x*(16 +22*x +6*x^2 +x^3)*exp(x)/4. - G. C. Greubel, May 19 2018