A159843 Sums of two rational cubes.
1, 2, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, 22, 26, 27, 28, 30, 31, 33, 34, 35, 37, 42, 43, 48, 49, 50, 51, 53, 54, 56, 58, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 96, 97, 98, 103, 104, 105, 106, 107, 110, 114, 115, 117
Offset: 1
References
- H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 379.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Levent Alpöge, Manjul Bhargava, and Ari Shnidman, Integers expressible as the sum of two rational cubes, arXiv:2210.10730 [math.NT], Oct. 2022.
- Bogdan Grechuk, Existence of Non-Trivial Solutions to Homogeneous Equations, Polynomial Diophantine Equations, Springer, Cham (2024), Chapter 6, 473-536.
- Somnath Jha, Dipramit Majumdar, and B. Sury, Infinitely many primes in each of the residue classes 1 and 8 modulo 9 are sums of two rational cubes, arXiv preprint arXiv:2301.06970 [math.NT], 2023-2024.
- Index entries for sequences related to sums of cubes
Crossrefs
Programs
-
Mathematica
(* A naive program with a few pre-computed terms *) nmax = 117; xmax = 2000; CubeFreePart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 3]} & /@ FactorInteger[n]); nn = Join[{1}, Reap[ Do[n = CubeFreePart[x*y*(x + y)]; If[1 < n <= nmax, Sow[n]], {x, 1, xmax}, {y, x, xmax}]][[2, 1]] // Union]; A159843 = Select[ Union[nn, nn*2^3, nn*3^3, nn*4^3, {17, 31, 53, 67, 71, 79, 89, 94, 97, 103, 107}], # <= nmax &] (* Jean-François Alcover, Apr 03 2012 *)
-
PARI
is(n, f=factor(n))=my(c=prod(i=1, #f~, f[i, 1]^(f[i, 2]\3)), r=n/c^3, E=ellinit([0, 16*r^2]), eri=ellrankinit(E), mwr=ellrank(eri), ar); if(r<3 || mwr[1], return(1)); if(mwr[2]<1, return(0)); ar=ellanalyticrank(E)[1]; if(ar<2, return(ar)); for(effort=1,99, mwr=ellrank(eri,effort); if(mwr[1]>0, return(1), mwr[2]<1, return(0))); "yes under BSD conjecture" \\ Charles R Greathouse IV, Dec 02 2022
Formula
A cubefree integer c>2 is in this sequence iff the elliptic curve y^2=x^3+16*c^2 has positive rank. - Max Alekseyev, Oct 10 2009
Comments