A159855 Riordan array ((1-2*x-x^2)/(1-x), x/(1-x)).
1, -1, 1, -2, 0, 1, -2, -2, 1, 1, -2, -4, -1, 2, 1, -2, -6, -5, 1, 3, 1, -2, -8, -11, -4, 4, 4, 1, -2, -10, -19, -15, 0, 8, 5, 1, -2, -12, -29, -34, -15, 8, 13, 6, 1, -2, -14, -41, -63, -49, -7, 21, 19, 7, 1, -2, -16, -55, -104, -112, -56, 14, 40, 26, 8, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; -2, 0, 1; -2, -2, 1, 1; -2, -4, -1, 2, 1; -2, -6, -5, 1, 3, 1;
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..5151
Crossrefs
Cf. A159854.
Programs
-
GAP
Flat(List([0..12],n->List([0..n],k->Binomial(n,n-k)-2*Binomial(n-1,n-k-1)-Binomial(n-2,n-k-2)))); # Muniru A Asiru, Mar 22 2018
-
Magma
/* As triangle */ [[Binomial(n, n-k)-2*Binomial(n-1, n-k-1)-Binomial(n-2, n-k-2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Mar 22 2018
-
Maple
C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if end proc: for n from 0 to 10 do seq(C(n, n-k)-2*C(n-1, n-k-1)-C(n-2, n-k-2), k = 0..n) end do; # Peter Bala, Mar 20 2018
-
Mathematica
(* The function RiordanArray is defined in A256893. *) RiordanArray[(1 - 2 # - #^2)/(1 - #)&, #/(1 - #)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
-
Sage
# uses[riordan_array from A256893] riordan_array((1-2*x-x^2)/(1-x), x/(1-x), 8) # Peter Luschny, Mar 21 2018
Formula
T(n,k) = C(n,n-k) - 2*C(n-1,n-k-1) - C(n-2,n-k-2), where C(n,k) = n!/(k!*(n-k)!) for 0 <= k <= n, otherwise 0. - Peter Bala, Mar 20 2018
Extensions
Two data values in row 10 corrected by Peter Bala, Mar 20 2018
Comments