A159864 Difference array of Fibonacci numbers A000045 read by antidiagonals.
0, 1, 1, 1, 0, -1, 2, 1, 1, 2, 3, 1, 0, -1, -3, 5, 2, 1, 1, 2, 5, 8, 3, 1, 0, -1, -3, -8, 13, 5, 2, 1, 1, 2, 5, 13, 21, 8, 3, 1, 0, -1, -3, -8, -21, 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, 55, 21, 8, 3, 1, 0, -1, -3, -8, -21, -55, 89, 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, 89
Offset: 0
Examples
Triangle begins: 0; 1, 1; 1, 0, -1; 2, 1, 1, 2; 3, 1, 0, -1, -3; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
A159864Q := proc(n,k) option remember; if n = 0 then combinat[fibonacci](k) ; else procname(n-1,k+1) -procname(n-1,k) ; fi; end: A159864 := proc(n,k) A159864Q(k,n-k) ; end: for n from 0 to 5 do for k from 0 to n do printf("%d,",A159864(n,k)) ; od: od: # R. J. Mathar, May 29 2009 # second Maple program: T:= (n, k)-> (<<0|1>, <1|1>>^(n-2*k))[1, 2]: seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Oct 27 2022
-
Mathematica
nmax = 10; f = Table[Fibonacci[n], {n, 0, nmax}]; t = Table[Differences[f, n], {n, 0, nmax}]; Table[t[[n-k+1, k+1]], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 14 2015 *) T[ n_, k_] := If[ k<0 || k>n, 0, Fibonacci[n - 2*k]]; Join@@Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Michael Somos, Oct 27 2022 *)
-
PARI
{T(n, k) = If(k<0 || k>n, 0, fibonacci(n - 2*k))}; /* Michael Somos, Oct 27 2022 */
Formula
Conjecture: row sums are Sum_{k=0..n} T(2n,k)=0. Sum_{k=0..n} T(2n+1,k) = A025169(n). - R. J. Mathar, May 29 2009
(1/2) * Sum_{k=0..n} |T(n,k)| = A074331(n). - Alois P. Heinz, Oct 27 2022
Extensions
Sign of a(65) = -55 corrected by Jean-François Alcover, Apr 14 2015