cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159889 Numerator of Hermite(n, 16/23).

Original entry on oeis.org

1, 32, -34, -68800, -2093684, 224163712, 18248827144, -839028775168, -161999734633840, 1917548044739072, 1603923010615074784, 31037878026343011328, -17673243900695263973696, -959600704244699318978560, 212370574074332282486900864, 21009464001651119352291258368
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 32/23, -34/529, -68800/12167, -2093684/279841..
		

Crossrefs

Cf. A009967 (denominators)

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(32/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
  • Mathematica
    Numerator[Table[HermiteH[n,16/23],{n,0,40}]] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
    Table[23^n*HermiteH[n, 16/23], {n,0,30}] (* G. C. Greubel, Jul 11 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 16/23)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 23^n * Hermite(n, 16/23).
E.g.f.: exp(32*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(32/23)^(n-2*k)/(k!*(n-2*k)!)). (End)