A159890 Positive numbers y such that y^2 is of the form x^2+(x+439)^2 with integer x.
401, 439, 485, 1921, 2195, 2509, 11125, 12731, 14569, 64829, 74191, 84905, 377849, 432415, 494861, 2202265, 2520299, 2884261, 12835741, 14689379, 16810705, 74812181, 85615975, 97979969, 436037345, 499006471, 571069109, 2541411889
Offset: 1
Examples
(-40, a(1)) = (-40, 401) is a solution: (-40)^2+(-40+439)^2 = 1600+159201 = 160801 = 401^2. (A130645(1), a(2)) = (0, 439) is a solution: 0^2+(0+439)^2 = 192721 = 439^2. (A130645(3), a(4)) = (1121, 1921) is a solution: 1121^2+(1121+439)^2 = 1256641+2433600 = 3690241 = 1921^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..3895
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[401,439,485,1921,2195,2509]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 17 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1}, {401,439,485,1921,2195,2509}, 50] (* G. C. Greubel, May 17 2018 *)
-
PARI
{forstep(n=-40, 10000000, [1, 3], if(issquare(2*n^2+878*n+192721, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=401, a(2)=439, a(3)=485, a(4)=1921, a(5)=2195, a(6)=2509.
G.f.: (1-x)*(401+840*x+1325*x^2+840*x^3+401*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 439*A001653(k) for k >= 1.
Comments