A159907 Numbers m with half-integral abundancy index, sigma(m)/m = k+1/2 with integer k.
2, 24, 4320, 4680, 26208, 8910720, 17428320, 20427264, 91963648, 197064960, 8583644160, 10200236032, 21857648640, 57575890944, 57629644800, 206166804480, 17116004505600, 1416963251404800, 15338300494970880, 75462255348480000, 88898072401645056, 301183421949935616, 6219051710415667200
Offset: 1
Keywords
Examples
a(1) = 2 since sigma(2)/2 = (1+2)/2 = 3/2 is of the form k+1/2 with integer k=1. a(2) = 24 is in the sequence since sigma(24)/24 = (1+2+3+4+6+8+12+24)/24 = (24+12+24)/24 = k+1/2 with integer k=2.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..130
- G. P. Michon, Multiperfect Numbers & Hemiperfect Numbers, Numericana.
- Walter Nissen, Abundancy : Some Resources .
- Project Euler, Problem 241: Perfection Quotients.
- Wikipedia, Hemiperfect number
Programs
-
PARI
isok(n) = denominator(sigma(n,-1)) == 2; \\ Michel Marcus, Sep 19 2015
-
PARI
forfactored(n=1,10^7, if(denominator(sigma(n,-1))==2, print1(n[1]", "))) \\ Charles R Greathouse IV, May 09 2017
-
Python
from fractions import Fraction from sympy import divisor_sigma as sigma def aupto(limit): for k in range(1, limit): if Fraction(int(sigma(k, 1)), k).denominator == 2: print(k, end=", ") aupto(3*10**4) # Michael S. Branicky, Feb 24 2021
Extensions
Terms a(20) onward from Max Alekseyev, Jun 05 2025
Comments