A159961 Cuban composites: composite numbers equal to the difference of two consecutive cubes.
91, 169, 217, 469, 721, 817, 1027, 1141, 1261, 1387, 1519, 2107, 2611, 2977, 3367, 3781, 3997, 4681, 4921, 5677, 5941, 6487, 6769, 7651, 7957, 8587, 8911, 9577, 9919, 10621, 10981, 11347, 12481, 12871, 14077, 14491, 14911, 15337, 15769, 16207, 17101, 17557
Offset: 1
Keywords
Examples
a(1) = 91 = 1+3t*(t+1) with t = 5 is the smallest cuban composite number. Note that 91 = 7*13, so its factors have the form 6k+1, in fact 7 = 6*1+1.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Programs
-
Mathematica
nn = 200; Select[Table[3 x^2 + 3 x + 1, {x, nn}], ! PrimeQ[#] &] (* T. D. Noe, Jan 30 2013 *) Select[Table[m=n+1;( n^2 + n m + m^2),{n,100}],!PrimeQ[#]&] (* K. D. Bajpai, Jun 12 2014 *) Select[Differences[Range[80]^3],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 07 2018 *)
Formula
a(1)=1+3t*(t+1) with t=5, a(2)=1+3t*(t+1) with t=7.
Comments