A160022 Primes p such that p^4 + 5^4 + 3^4 is prime.
3, 23, 47, 53, 67, 73, 89, 101, 103, 109, 151, 157, 179, 229, 521, 557, 569, 619, 661, 821, 977, 1013, 1087, 1129, 1277, 1321, 1451, 1559, 1607, 1627, 1741, 1867, 1871, 1949, 2137, 2389, 2441, 2797, 3271, 3313, 3643, 3677, 3769, 3847, 4001, 4027, 4133
Offset: 1
Examples
p = 3: 3^4 + 5^4 + 3^4 = 787 is prime, so 3 is in the sequence. p = 5: 5^4 + 5^4 + 3^4 = 1331 = 11^3, so 5 is not in the sequence. p = 101: 101^4 + 5^4 + 3^4 = 104061107 is prime, so 101 is in the sequence. p = 103: 103^4 + 5^4 + 3^4 = 112551587 is prime, so 103 is in the sequence.
Programs
-
Magma
[p: p in PrimesUpTo(5000)|IsPrime(p^4+706)] // Vincenzo Librandi, Dec 18 2010
-
Mathematica
With[{c=5^4+3^4},Select[Prime[Range[600]],PrimeQ[#^4+c]&]] (* Harvey P. Dale, Aug 14 2011 *)
-
PARI
is(n)=isprime(n) && isprime(n^4+706) \\ Charles R Greathouse IV, Jun 07 2016
Extensions
Edited, 1607 inserted and extended beyond 3643 by Klaus Brockhaus, May 03 2009
Comments