cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A273547 Primes of the form 2^(2^n) + 27.

Original entry on oeis.org

29, 31, 43, 283, 65563
Offset: 1

Views

Author

Vincenzo Librandi, May 31 2016

Keywords

Comments

Terms given correspond to n = 0, 1, 2, 3, and 4.
Next term >= 18.
Next term >= 2^2^22 + 27. - Charles R Greathouse IV, Jun 06 2016

Crossrefs

Cf. primes of the form 2^(2^n)+k: A160027 (k=15), this sequence (k=27), A160029 (k=51), A160028 (k=81), A160032 (k=93), A273548 (k=163), A273549 (k=165), A273550 (k=177), A273551 (k=253), A273552 (k=267), A273804 (k=301), A273805 (k=331), A273806 (k=357), A160030 (k=385), A273807 (k=427), A273808 (k=463), A273809 (k=487), A273810 (k=597), A160033 (k=757), A273811 (k=805), A160034 (k=807).

Programs

  • Magma
    [a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+27];
    
  • Mathematica
    Select[Table[2^(2^n) + 27, {n, 0, 20}], PrimeQ]
  • PARI
    for(n=0,4, if(ispseudoprime(t=2^2^n+27), print1(t", "))) \\ Charles R Greathouse IV, Jun 06 2016

A160030 Primes of the form 2^(2^k)+385.

Original entry on oeis.org

389, 401, 641, 65921, 4294967681, 340282366920938463463374607431768211841
Offset: 1

Views

Author

Cino Hilliard, Apr 30 2009

Keywords

Comments

Terms given correspond to k= 1, 2, 3, 4, 5 and 7.
Next term >= 2^2^20 + 385. - Vincenzo Librandi, Jun 07 2016
Next term >= 2^2^33 + 385. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+385]; // Vincenzo Librandi, Jun 07 2016
  • Mathematica
    Select[Table[2^(2^n) + 385, {n, 0, 20}], PrimeQ] (* Vincenzo Librandi, Jun 07 2016 *)
  • PARI
    g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
    

A160033 Primes of the form 2^(2^k)+757.

Original entry on oeis.org

761, 773, 1013, 66293, 18446744073709552373, 340282366920938463463374607431768212213, 115792089237316195423570985008687907853269984665640564039457584007913129640693
Offset: 1

Views

Author

Cino Hilliard, Apr 30 2009

Keywords

Comments

Terms given correspond to k= 1, 2, 3, 4, 6, 7 and 8.
Next term >= 2^2^26 + 757. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..10] | IsPrime(a) where a is 2^(2^n)+ 757]; // Vincenzo Librandi, Jun 05 2016
  • Mathematica
    Select[Table[2^(2^n) + 757, {n, 0, 10}], PrimeQ] (* Vincenzo Librandi, Jun 05 2016 *)
  • PARI
    g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
    

A160034 Primes of the form 2^(2^k) + 807 .

Original entry on oeis.org

809, 811, 823, 1063, 66343, 18446744073709552423, 115792089237316195423570985008687907853269984665640564039457584007913129640743
Offset: 1

Views

Author

Cino Hilliard, Apr 30 2009

Keywords

Comments

Terms given correspond to k= 0, 1, 2, 3, 4, 6 and 8.
Next term is >= 2^2^25 + 807. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [ a: n in [0..10] | IsPrime(a) where a is 2^(2^n) + 807 ]; // Vincenzo Librandi, Jun 05 2016
  • Mathematica
    Select[Table[2^(2^n) + 807, {n, 0, 10}], PrimeQ] (* Vincenzo Librandi, Jun 05 2016 *)
  • PARI
    g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
    
Showing 1-4 of 4 results.