cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A160027 Primes of the form 2^(2^k)+15.

Original entry on oeis.org

17, 19, 31, 271, 65551, 4294967311
Offset: 1

Views

Author

Cino Hilliard, Apr 30 2009

Keywords

Comments

Fermat primes of order 15.
The number of Fermat primes of order 15 exceeds the number of known Fermat primes.
Terms given correspond to n= 0, 1, 2, 3, 4 and 5.
Next term >= 2^2^16 + 15. - Vincenzo Librandi, Jun 07 2016
Next term >= 2^2^17 + 15. - Charles R Greathouse IV, Jun 07 2016

Examples

			For k = 5, 2^32 + 15 = 4294967311 is prime.
		

Crossrefs

Cf. A019434 (order 1), A104067 (superset for order 13), A160028 (order 81).
Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+15]; // Vincenzo Librandi, Jun 07 2016
  • Mathematica
    Select[Table[2^(2^n) + 15, {n, 0, 10}], PrimeQ] (* Vincenzo Librandi, Jun 07 2016 *)
  • PARI
    g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
    

Formula

Intersection of the primes and the set of Fermat numbers F(k,m) = 2^(2^k)+m of order m=15.

Extensions

Edited by R. J. Mathar, May 08 2009

A160028 Primes of the form 2^(2^k)+81.

Original entry on oeis.org

83, 97, 337, 65617, 4294967377, 18446744073709551697, 340282366920938463463374607431768211537
Offset: 1

Views

Author

Cino Hilliard, Apr 30 2009, May 01 2009

Keywords

Comments

Fermat primes of order 81, established by k=0,2,3,4,5,6 and 7.
The number of Fermat primes of order 81 exceeds the number of known Fermat primes by at least 2.
Next term >= 2^2^17 + 81. - Vincenzo Librandi, Jun 07 2016
Next term >= 2^2^29 + 81. - Charles R Greathouse IV, Jun 07 2016

Examples

			For n = 5, 2^32 + 81 = 4294967377 prime.
		

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+81]; // Vincenzo Librandi, Jun 07 2016
  • Mathematica
    Select[Table[2^(2^n) + 81, {n, 0, 10}], PrimeQ] (* Vincenzo Librandi, Jun 07 2016 *)
  • PARI
    g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
    

Formula

Intersection of the primes and the set of Fermat numbers F(k,m) = 2^(2^k)+m of order m=81.

Extensions

Edited by R. J. Mathar, May 08 2009

A160030 Primes of the form 2^(2^k)+385.

Original entry on oeis.org

389, 401, 641, 65921, 4294967681, 340282366920938463463374607431768211841
Offset: 1

Views

Author

Cino Hilliard, Apr 30 2009

Keywords

Comments

Terms given correspond to k= 1, 2, 3, 4, 5 and 7.
Next term >= 2^2^20 + 385. - Vincenzo Librandi, Jun 07 2016
Next term >= 2^2^33 + 385. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+385]; // Vincenzo Librandi, Jun 07 2016
  • Mathematica
    Select[Table[2^(2^n) + 385, {n, 0, 20}], PrimeQ] (* Vincenzo Librandi, Jun 07 2016 *)
  • PARI
    g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
    

A160032 Primes of the form 2^(2^k)+93.

Original entry on oeis.org

97, 109, 349, 65629, 4294967389, 18446744073709551709
Offset: 1

Views

Author

Cino Hilliard, Apr 30 2009

Keywords

Comments

Terms given correspond to k = 1, 2, 3, 4, 5 and 6.
Next term >= 2^2^24 + 93. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+93]; // Vincenzo Librandi, Jun 07 2016
  • Maple
    select(isprime,[seq(2^(2^n)+93, n=0..15)]); # Robert Israel, Jun 07 2016
  • Mathematica
    Select[Table[2^(2^n) + 93, {n, 0, 15}], PrimeQ] (* Vincenzo Librandi, Jun 07 2016 *)
  • PARI
    g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
    

A160033 Primes of the form 2^(2^k)+757.

Original entry on oeis.org

761, 773, 1013, 66293, 18446744073709552373, 340282366920938463463374607431768212213, 115792089237316195423570985008687907853269984665640564039457584007913129640693
Offset: 1

Views

Author

Cino Hilliard, Apr 30 2009

Keywords

Comments

Terms given correspond to k= 1, 2, 3, 4, 6, 7 and 8.
Next term >= 2^2^26 + 757. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..10] | IsPrime(a) where a is 2^(2^n)+ 757]; // Vincenzo Librandi, Jun 05 2016
  • Mathematica
    Select[Table[2^(2^n) + 757, {n, 0, 10}], PrimeQ] (* Vincenzo Librandi, Jun 05 2016 *)
  • PARI
    g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
    

A160034 Primes of the form 2^(2^k) + 807 .

Original entry on oeis.org

809, 811, 823, 1063, 66343, 18446744073709552423, 115792089237316195423570985008687907853269984665640564039457584007913129640743
Offset: 1

Views

Author

Cino Hilliard, Apr 30 2009

Keywords

Comments

Terms given correspond to k= 0, 1, 2, 3, 4, 6 and 8.
Next term is >= 2^2^25 + 807. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [ a: n in [0..10] | IsPrime(a) where a is 2^(2^n) + 807 ]; // Vincenzo Librandi, Jun 05 2016
  • Mathematica
    Select[Table[2^(2^n) + 807, {n, 0, 10}], PrimeQ] (* Vincenzo Librandi, Jun 05 2016 *)
  • PARI
    g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
    

A274022 Primes of the form 2^(2^k) + 3.

Original entry on oeis.org

5, 7, 19, 65539
Offset: 1

Views

Author

Vincenzo Librandi, Jun 07 2016

Keywords

Comments

Terms given correspond to n = 0, 1, 2, and 4.
Next term >= 2^2^28 + 3. - Charles R Greathouse IV, Jun 08 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..10] | IsPrime(a) where a is 2^(2^n)+3];
    
  • Mathematica
    Select[Table[2^(2^n) + 3, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=0,4, if(ispseudoprime(t=2^2^n+3), print1(t", "))) \\ Charles R Greathouse IV, Jun 08 2016

A273548 Primes of the form 2^(2^k) + 163.

Original entry on oeis.org

167, 179, 419, 65699, 4294967459
Offset: 1

Views

Author

Vincenzo Librandi, Jun 01 2016

Keywords

Comments

Terms given correspond to k = 1, 2, 3, 4 and 5.
Next term >= 2^2^34 + 163. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+163];
    
  • Mathematica
    Select[Table[2^(2^n) + 163, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=1,5, if(ispseudoprime(t=2^2^n+163), print1(t", "))) \\ Charles R Greathouse IV, Jun 08 2016

A273549 Primes of the form 2^(2^n) + 165.

Original entry on oeis.org

167, 181, 421, 65701, 340282366920938463463374607431768211621
Offset: 1

Views

Author

Vincenzo Librandi, Jun 01 2016

Keywords

Comments

Terms given correspond to n = 0, 2, 3, 4 and 7.
Next term >= 2^2^25 + 165. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+165];
    
  • Mathematica
    Select[Table[2^(2^n) + 165, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=0,7, if(ispseudoprime(t=2^2^n+165), print1(t", "))) \\ Charles R Greathouse IV, Jun 08 2016

A273550 Primes of the form 2^(2^n) + 177.

Original entry on oeis.org

179, 181, 193, 433, 65713
Offset: 1

Views

Author

Vincenzo Librandi, Jun 01 2016

Keywords

Comments

Terms given correspond to n = 0, 1, 2, 3, and 4.
Next term >= 2^2^23 + 177. - Charles R Greathouse IV, Jun 08 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+177];
    
  • Mathematica
    Select[Table[2^(2^n) + 177, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=0, 4, if(ispseudoprime(t=2^2^n+177), print1(t", "))) \\ Charles R Greathouse IV, Jun 08 2016
Showing 1-10 of 21 results. Next