A273547
Primes of the form 2^(2^n) + 27.
Original entry on oeis.org
29, 31, 43, 283, 65563
Offset: 1
Cf. primes of the form 2^(2^n)+k:
A160027 (k=15), this sequence (k=27),
A160029 (k=51),
A160028 (k=81),
A160032 (k=93),
A273548 (k=163),
A273549 (k=165),
A273550 (k=177),
A273551 (k=253),
A273552 (k=267),
A273804 (k=301),
A273805 (k=331),
A273806 (k=357),
A160030 (k=385),
A273807 (k=427),
A273808 (k=463),
A273809 (k=487),
A273810 (k=597),
A160033 (k=757),
A273811 (k=805),
A160034 (k=807).
-
[a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+27];
-
Select[Table[2^(2^n) + 27, {n, 0, 20}], PrimeQ]
-
for(n=0,4, if(ispseudoprime(t=2^2^n+27), print1(t", "))) \\ Charles R Greathouse IV, Jun 06 2016
A160030
Primes of the form 2^(2^k)+385.
Original entry on oeis.org
389, 401, 641, 65921, 4294967681, 340282366920938463463374607431768211841
Offset: 1
Cf. similar sequences listed in
A273547.
-
[a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+385]; // Vincenzo Librandi, Jun 07 2016
-
Select[Table[2^(2^n) + 385, {n, 0, 20}], PrimeQ] (* Vincenzo Librandi, Jun 07 2016 *)
-
g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
A160032
Primes of the form 2^(2^k)+93.
Original entry on oeis.org
97, 109, 349, 65629, 4294967389, 18446744073709551709
Offset: 1
Cf. similar sequences listed in
A273547.
-
[a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+93]; // Vincenzo Librandi, Jun 07 2016
-
select(isprime,[seq(2^(2^n)+93, n=0..15)]); # Robert Israel, Jun 07 2016
-
Select[Table[2^(2^n) + 93, {n, 0, 15}], PrimeQ] (* Vincenzo Librandi, Jun 07 2016 *)
-
g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
A160033
Primes of the form 2^(2^k)+757.
Original entry on oeis.org
761, 773, 1013, 66293, 18446744073709552373, 340282366920938463463374607431768212213, 115792089237316195423570985008687907853269984665640564039457584007913129640693
Offset: 1
Cf. similar sequences listed in
A273547.
-
[a: n in [0..10] | IsPrime(a) where a is 2^(2^n)+ 757]; // Vincenzo Librandi, Jun 05 2016
-
Select[Table[2^(2^n) + 757, {n, 0, 10}], PrimeQ] (* Vincenzo Librandi, Jun 05 2016 *)
-
g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
Showing 1-4 of 4 results.
Comments