A160135 Sum of non-exponential divisors of n.
1, 1, 1, 1, 1, 6, 1, 5, 1, 8, 1, 10, 1, 10, 9, 9, 1, 15, 1, 12, 11, 14, 1, 30, 1, 16, 10, 14, 1, 42, 1, 29, 15, 20, 13, 19, 1, 22, 17, 40, 1, 54, 1, 18, 18, 26, 1, 58, 1, 33, 21, 20, 1, 60, 17, 50, 23, 32, 1, 78, 1, 34, 20, 49, 19, 78, 1, 24, 27, 74, 1, 75, 1, 40, 34, 26, 19, 90, 1, 76, 28
Offset: 1
Keywords
Examples
a(8) = A000203(8) - A051377(8) = 15 - 10 = 5. a(8) = a(2^3) = (2^4-1)/(2-1) - (2^1+2^3) = 5.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Maple
lpowp := proc(n,p) local e; for e from 0 do if n mod p^(e+1) <> 0 then RETURN(e) ; fi; od: end: expdvs := proc(n) local a,d,nfcts,b,f,iseDiv ; a := {} ; nfcts := ifactors(n)[2] ; for d in ( numtheory[divisors](n) minus {1} ) do iseDiv := true; for f in nfcts do b := lpowp(d,op(1,f) ) ; if b = 0 or op(2,f) mod b <> 0 then iseDiv := false; fi; od: if iseDiv then a := a union {d} ; fi; od: a ; end proc: A051377 := proc(n) local k ; add( k, k = expdvs(n)) ; end: A160135 := proc(n) if n = 1 then 1; else numtheory[sigma][1](n)-A051377(n) ; fi; end: seq(A160135(n),n=1..120) ; # R. J. Mathar, May 08 2009
-
Mathematica
esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; a[1] = 1; a[n_] := DivisorSigma[1, n] - esigma[n]; Array[a, 100] (* Amiram Eldar, Oct 26 2021 after Jean-François Alcover at A051377 *)
-
PARI
A051377(n) = { my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2], d, f[i, 1]^d)); }; \\ From A051377 A160135(n) = if(1==n,n, sigma(n) - A051377(n)); \\ Antti Karttunen, Mar 04 2018
Formula
a(1) = 1, a(p) = 1, a(p*q) = 1 + p + q, a(p*q*...*z) = (p + 1)*(q + 1)*...*(z + 1) - p*q*...*z, for p, q,..,z = primes (A000040), p*q = product of two distinct primes (A006881), p*q*...*z = product of k (k > 0) distinct primes (A120944).
Extensions
Edited by R. J. Mathar, May 08 2009
Comments