cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160135 Sum of non-exponential divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 5, 1, 8, 1, 10, 1, 10, 9, 9, 1, 15, 1, 12, 11, 14, 1, 30, 1, 16, 10, 14, 1, 42, 1, 29, 15, 20, 13, 19, 1, 22, 17, 40, 1, 54, 1, 18, 18, 26, 1, 58, 1, 33, 21, 20, 1, 60, 17, 50, 23, 32, 1, 78, 1, 34, 20, 49, 19, 78, 1, 24, 27, 74, 1, 75, 1, 40, 34, 26, 19, 90, 1, 76, 28
Offset: 1

Views

Author

Jaroslav Krizek, May 02 2009

Keywords

Comments

The non-exponential divisors d|n of a number n = p(i)^e(i) are divisors d not of the form p(i)^s(i), s(i)|e(i) for all i.

Examples

			a(8) = A000203(8) - A051377(8) = 15 - 10 = 5. a(8) = a(2^3) = (2^4-1)/(2-1) - (2^1+2^3) = 5.
		

Crossrefs

Programs

  • Maple
    lpowp := proc(n,p) local e; for e from 0 do if n mod p^(e+1) <> 0 then RETURN(e) ; fi; od: end:
    expdvs := proc(n) local a,d,nfcts,b,f,iseDiv ; a := {} ; nfcts := ifactors(n)[2] ; for d in ( numtheory[divisors](n) minus {1} ) do iseDiv := true; for f in nfcts do b := lpowp(d,op(1,f) ) ; if b = 0 or op(2,f) mod b <> 0 then iseDiv := false; fi; od: if iseDiv then a := a union {d} ; fi; od: a ; end proc:
    A051377 := proc(n) local k ; add( k, k = expdvs(n)) ; end: A160135 := proc(n) if n = 1 then 1; else numtheory[sigma][1](n)-A051377(n) ; fi; end: seq(A160135(n),n=1..120) ; # R. J. Mathar, May 08 2009
  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; a[1] = 1; a[n_] := DivisorSigma[1, n] - esigma[n]; Array[a, 100] (* Amiram Eldar, Oct 26 2021 after Jean-François Alcover at A051377 *)
  • PARI
    A051377(n) = { my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2], d, f[i, 1]^d)); }; \\ From A051377
    A160135(n) = if(1==n,n, sigma(n) - A051377(n)); \\ Antti Karttunen, Mar 04 2018

Formula

a(n) = A000203(n) - A051377(n) for n >= 2.
a(1) = 1, a(p) = 1, a(p*q) = 1 + p + q, a(p*q*...*z) = (p + 1)*(q + 1)*...*(z + 1) - p*q*...*z, for p, q,..,z = primes (A000040), p*q = product of two distinct primes (A006881), p*q*...*z = product of k (k > 0) distinct primes (A120944).
a(p^k) = (p^(k+1)-1)/(p-1)- Sum_{d|k} p^d for p = primes (A000040), p^k = prime powers A000961(n>1), k = natural numbers (A000027)>
a(p^q) = 1+(p^1-p^1)+p^2+p^3+...+p^(q-1), for p, q = primes (A000040), p^q = prime powers of primes (A053810).

Extensions

Edited by R. J. Mathar, May 08 2009