A160199 Product of non-exponential divisors of n.
1, 1, 1, 1, 1, 6, 1, 4, 1, 10, 1, 24, 1, 14, 15, 8, 1, 54, 1, 40, 21, 22, 1, 2304, 1, 26, 9, 56, 1, 27000, 1, 512, 33, 34, 35, 216, 1, 38, 39, 6400, 1, 74088, 1, 88, 135, 46, 1, 73728, 1, 250, 51, 104, 1, 26244, 55, 12544, 57, 58, 1, 25920000, 1, 62, 189, 512, 65, 287496, 1
Offset: 1
Keywords
Examples
The divisors of 6 are 1, 2, 3, 6. The only exponential divisor of 6 is 6, hence a(6) = 1*2*3 = 6. The divisors of 16 are 1, 2, 4, 8, 16. The exponential divisors of 16 are 2, 4, 16, hence a(16) = 1*8 = 8.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..25000
- Eric Weisstein's World of Mathematics, e-Divisor
Crossrefs
Programs
-
Magma
[1] cat [ &*[ d: d in Divisors(n) | exists(t) { p: p in P | v eq 0 or e mod v gt 0 where v is Valuation(d, p) where e is Valuation(n, p) } where P is PrimeDivisors(n) ]: n in [2..67] ]; // Klaus Brockhaus, May 26 2009
-
Mathematica
f[p_, e_] := p^(DivisorSigma[1, e]/DivisorSigma[0, e]); a[n_] := Module[{fct = FactorInteger[n], e}, e = fct[[;; , 2]]; n^(Times @@ (e + 1)/2)/(Times @@ (f @@@ fct))^(Times @@ DivisorSigma[0, e])]; Array[a, 100] (* Amiram Eldar, Jan 25 2025 *)
-
PARI
A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); A049419(n) = factorback(apply(numdiv,factor(n)[,2])); A157488(n) = { my(f=factor(n), dexp=A049419(n)); prod(i=1, #f~, f[i, 1]^((sigma(f[i, 2]) * dexp / numdiv(f[i, 2])))); }; A160199(n) = (A007955(n) / A157488(n)); \\ Antti Karttunen, Jan 24 2025
Extensions
Edited by Klaus Brockhaus, May 26 2009
Comments