A160209 Positive numbers y such that y^2 is of the form x^2+(x+937)^2 with integer x.
673, 937, 1685, 2353, 4685, 9437, 13445, 27173, 54937, 78317, 158353, 320185, 456457, 922945, 1866173, 2660425, 5379317, 10876853, 15506093, 31352957, 63394945, 90376133, 182738425, 369492817, 526750705, 1065077593, 2153561957
Offset: 1
Keywords
Examples
(-385, a(1)) = (-385, 673) is a solution: (-385)^2+(-385+937)^2 = 148225+304704 = 452929 = 673^2. (A129974(1), a(2)) = (0, 937) is a solution: 0^2+(0+937)^2 = 877969 = 937^2. (A129974(3), a(4)) = (1128, 2353) is a solution: 1128^2+(1128+937)^2 = 1272384+4264225 = 5536609 = 2353^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1},{673,937,1685,2353,4685,9437},30] (* Harvey P. Dale, Dec 25 2017 *)
-
PARI
{forstep(n=-388, 10000000, [3, 1], if(issquare(2*n^2+1874*n+877969, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=673, a(2)=937, a(3)=1685, a(4)=2353, a(5)=4685, a(6)=9437.
G.f.: (1-x)*(673+1610*x+3295*x^2+1610*x^3+673*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 937*A001653(k) for k >= 1.
Comments