A160269 Numerator of Hermite(n, 15/29).
1, 30, -782, -124380, 214572, 843265800, 23493423480, -7805435749200, -510774640529520, 89706704225349600, 10423307635096361760, -1196167536017489419200, -228737063945077567859520, 17281333628624679401347200, 5520004649081806480856680320
Offset: 0
Examples
Numerators of 1, 30/29, -782/841, -124380/24389, 214572/707281,...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..372
Crossrefs
Cf. A009973 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(30/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
-
Mathematica
Numerator[HermiteH[Range[0,20],15/29]] (* Harvey P. Dale, Dec 12 2012 *) Table[29^n*HermiteH[n, 15/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 15/29)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(30*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
Formula
From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 15/29).
E.g.f.: exp(30*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(30/29)^(n-2*k)/(k!*(n-2*k)!)). (End)