A160279 Numerator of Hermite(n, 17/29).
1, 34, -526, -132260, -1842644, 827195384, 43621279096, -6864932326064, -747004639162480, 66976371647992864, 13585352863673379616, -664640573754345065536, -273953978191332601883456, 4100670082152392338741120, 6129700469924860012300846976
Offset: 0
Examples
Numerators of 1, 34/29, -526/841, -132260/24389, -1842644/707281, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..371
Crossrefs
Cf. A009973 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(34/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 03 2018
-
Mathematica
Numerator[HermiteH[Range[0,20],17/29]] (* Harvey P. Dale, Dec 24 2015 *) Table[29^n*HermiteH[n, 17/29], {n, 0, 30}] (* G. C. Greubel, Oct 03 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 17/29)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(34*x - 841*x^2))) \\ G. C. Greubel, Oct 03 2018
Formula
From G. C. Greubel, Oct 03 2018: (Start)
a(n) = 29^n * Hermite(n, 17/29).
E.g.f.: exp(34*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(34/29)^(n-2*k)/(k!*(n-2*k)!)). (End)