A160295 Numerator of Hermite(n, 17/30).
1, 17, -161, -18037, -89279, 30948857, 727008319, -71202772477, -3500523336959, 196821084188897, 17523077945895199, -587802553769818117, -96731879246268143039, 1529691843170459400137, 591886254924566446580479, 425007721743735371005043
Offset: 0
Examples
Numerators of 1, 17/15, -161/225, -18037/3375, -89279/50625, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..412
Crossrefs
Cf. A001024 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(17/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 03 2018
-
Mathematica
Numerator[HermiteH[Range[0,20],17/30]] (* Harvey P. Dale, Jan 02 2016 *) Table[15^n*HermiteH[n, 17/30], {n, 0, 30}] (* G. C. Greubel, Oct 03 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 17/30)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(17*x - 225*x^2))) \\ G. C. Greubel, Oct 03 2018
Formula
From G. C. Greubel, Oct 03 2018: (Start)
a(n) = 15^n * Hermite(n, 17/30).
E.g.f.: exp(17*x - 225*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/15)^(n-2*k)/(k!*(n-2*k)!)). (End)