A160297 Numerator of Hermite(n, 23/30).
1, 23, 79, -18883, -540959, 21547343, 1712746639, -18784653403, -5827198941119, -66400823394937, 22072936773448399, 806481251066529677, -90711968254039392479, -6441374025602166282817, 382513411697280621497359, 49378464830331101876186357
Offset: 0
Examples
Numerators of 1, 23/15, 79/225, -18883/3375, -540959/50625, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..412
Crossrefs
Cf. A001024 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(23/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 03 2018
-
Mathematica
Numerator[HermiteH[Range[0,20],23/30]] (* Harvey P. Dale, Sep 30 2012 *) Table[15^n*HermiteH[n, 23/30], {n, 0, 30}] (* G. C. Greubel, Oct 03 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 23/30)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(23*x - 225*x^2))) \\ G. C. Greubel, Oct 03 2018
Formula
From G. C. Greubel, Oct 03 2018: (Start)
a(n) = 15^n * Hermite(n, 23/30).
E.g.f.: exp(23*x - 225*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(23/15)^(n-2*k)/(k!*(n-2*k)!)). (End)