cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160327 Decimal expansion of (e-1)/(e+1).

Original entry on oeis.org

4, 6, 2, 1, 1, 7, 1, 5, 7, 2, 6, 0, 0, 0, 9, 7, 5, 8, 5, 0, 2, 3, 1, 8, 4, 8, 3, 6, 4, 3, 6, 7, 2, 5, 4, 8, 7, 3, 0, 2, 8, 9, 2, 8, 0, 3, 3, 0, 1, 1, 3, 0, 3, 8, 5, 5, 2, 7, 3, 1, 8, 1, 5, 8, 3, 8, 0, 8, 0, 9, 0, 6, 1, 4, 0, 4, 0, 9, 2, 7, 8, 7, 7, 4, 9, 4, 9, 0, 6, 4, 1, 5, 1, 9, 6, 2, 4, 9, 0, 5, 8, 4, 3, 4, 8
Offset: 0

Views

Author

Harry J. Smith, May 09 2009

Keywords

Examples

			0.462117157260009758502318483643672548730289280330113038552731815838080...
		

Crossrefs

Cf. A016825 (continued fraction), A086403/A079165 (convergents).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (Exp(1) - 1)/(Exp(1) + 1); // G. C. Greubel, Oct 05 2018
  • Mathematica
    RealDigits[(E-1)/(E+1), 10, 100][[1]] (* G. C. Greubel, Oct 05 2018 *)
  • PARI
    default(realprecision, 20080); x=tanh(1/2)*10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b160327.txt", n, " ", d));
    
  • PARI
    (exp(1)-1)/(exp(1)+1) \\ Altug Alkan, Oct 05 2018
    

Formula

(e-1)/(e+1) = tanh(1/2).
Equals 2 * Sum_{k>=1} (2^(2*k)-1)*B(2*k)/(2*k)!, where B(2*k) = A000367(k)/A002445(k) are the Bernoulli numbers. - Amiram Eldar, Nov 25 2020
Equals -i * tan(i/2). - Michal Paulovic, Jan 03 2023