cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160450 Expansion of (1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)).

Original entry on oeis.org

1, 5, 43, 681, 14491, 336465, 7997683, 191374041, 4588603531, 110092229025, 2641942301923, 63404456863401, 1521689741669371, 36520416189619185, 876488888356983763, 21035724521756752761, 504857318142580028011, 12116575072428716250945, 290797797234516859979203, 6979147097598917713826121
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2009

Keywords

Comments

Number of isomorphism classes of 4-fold coverings of a connected graph with Betti number n. [Kwak and Lee]
Number of orbits of the conjugacy action of Sym(4) on Sym(4)^n [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 24 2015

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

Crossrefs

Fourth row of A160449.

Programs

  • Mathematica
    Table[3^(n - 1) + 2*4^(n - 1) + 8^(n - 1) + 24^(n - 1), {n, 0, 19}] (* Michael De Vlieger, Mar 24 2015 *)
    LinearRecurrence[{39,-428,1728,-2304},{1,5,43,681},20] (* Harvey P. Dale, Feb 06 2017 *)
  • PARI
    Vec((1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)) + O(x^30)) \\ Michel Marcus, Jan 14 2016

Formula

G.f.: (1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)).
a(n) = 3^(n-1) + 2*4^(n-1) + 8^(n-1) + 24^(n-1). - Álvar Ibeas, Mar 24 2015

Extensions

Entry revised by N. J. A. Sloane, Sep 15 2014