A160450 Expansion of (1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)).
1, 5, 43, 681, 14491, 336465, 7997683, 191374041, 4588603531, 110092229025, 2641942301923, 63404456863401, 1521689741669371, 36520416189619185, 876488888356983763, 21035724521756752761, 504857318142580028011, 12116575072428716250945, 290797797234516859979203, 6979147097598917713826121
Offset: 0
References
- J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.
Links
- Álvar Ibeas, Table of n, a(n) for n = 0..500
- M. W. Hero and J. F. Willenbring, Stable Hilbert series as related to the measurement of quantum entanglement, Discrete Math., 309 (2010), 6508-6514.
- J. H. Kwak and J. Lee, Isomorphism classes of graph bundles. Can. J. Math., 42(4), 1990, pp. 747-761.
- A. Prasad, Equivalence classes of nodes in trees and rational generating functions, arXiv preprint arXiv:1407.5284 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (39,-428,1728,-2304).
Crossrefs
Fourth row of A160449.
Programs
-
Mathematica
Table[3^(n - 1) + 2*4^(n - 1) + 8^(n - 1) + 24^(n - 1), {n, 0, 19}] (* Michael De Vlieger, Mar 24 2015 *) LinearRecurrence[{39,-428,1728,-2304},{1,5,43,681},20] (* Harvey P. Dale, Feb 06 2017 *)
-
PARI
Vec((1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)) + O(x^30)) \\ Michel Marcus, Jan 14 2016
Formula
G.f.: (1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)).
a(n) = 3^(n-1) + 2*4^(n-1) + 8^(n-1) + 24^(n-1). - Álvar Ibeas, Mar 24 2015
Extensions
Entry revised by N. J. A. Sloane, Sep 15 2014
Comments