cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160481 Row sums of the Beta triangle A160480.

Original entry on oeis.org

-1, -10, -264, -13392, -1111680, -137030400, -23500108800, -5351202662400, -1562069156659200, -568747270103040000, -252681700853514240000, -134539938778433126400000, -84573370199475510312960000, -61972704966344777143418880000, -52361960516341326660973363200000
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009, Sep 19 2012

Keywords

Comments

It is conjectured that the row sums of the Beta triangle depend on three different sequences. Two Maple algorithms are given. The first one gives the row sums according to the Beta triangle A160480 and the second one gives the row sums according to our conjecture.

Crossrefs

A160480 is the Beta triangle.
Row sum factors A120778, A000165 and A049606.

Programs

  • Maple
    nmax := 14; mmax := nmax: for n from 1 to nmax do BETA(n, n) := 0 end do: m := 1: for n from m+1 to nmax do BETA(n,m) := (2*n-3)^2*BETA(n-1, m)-(2*n-4)! od: for m from 2 to mmax do for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - BETA(n-1, m-1) od: od: for n from 2 to nmax do s1(n) := 0: for m from 1 to n-1 do s1(n) := s1(n) + BETA(n, m) od: od: seq(s1(n), n=2..nmax);
    # End first program
    nmax := nmax; A120778 := proc(n): numer(sum(binomial(2*k1, k1)/(k1+1) / 4^k1, k1=0..n)) end proc: A000165 := proc(n): 2^n*n! end proc: A049606 := proc(n): denom(2^n/n!) end proc: for n from 2 to nmax do s2(n) := (-1)*A120778(n-2)*A000165(n-2)*A049606(n-1) end do: seq(s2(n), n=2..nmax);
    # End second program
  • Mathematica
    BETA[2, 1] = -1; BETA[n_, 1] := BETA[n, 1] = (2*n - 3)^2*BETA[n - 1, 1] - (2*n - 4)!; BETA[n_ /; n > 2, m_ /; m > 0] /; 1 <= m <= n := BETA[n, m] = (2*n - 3)^2*BETA[n - 1, m] - BETA[n - 1, m - 1]; BETA[, ] = 0;
    Table[Sum[BETA[n, m], {m, 1, n - 1}], {n, 2, 14}] (* Jean-François Alcover, Dec 13 2017 *)

Formula

Rowsums(n) = (-1)*A120778(n-2)*A000165(n-2)*A049606(n-1) for n >= 2.
Conjecture: a(n) = (2*n-3)! - 2^(2*n-3)*(n-1)!*(n-2)!, for n >= 2 (gives the first 13 terms). - Christopher P. Herzog, Nov 25 2014
Meijer's and Herzog's conjectures can also be written as: a(n) = -A129890(n-2)*A000165(n-2) = A009445(n-2) - A002474(n-2). - Peter Luschny, Dec 01 2014

Extensions

a(15)-a(16) from Stefano Spezia, Jun 28 2024