A160542 Not divisible by 11.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Cf. A043096.
Programs
-
Maple
A160541 := proc(n) option remember ; if n <= 10 then n; else procname(n-10)+11 ;; end if; end proc: seq(A160541(n),n=1..100) ; # R. J. Mathar, Aug 05 2022
-
Mathematica
Select[Table[n,{n,200}],Mod[#,11]!=0&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011 *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{1,2,3,4,5,6,7,8,9,10,12},70] (* Harvey P. Dale, Sep 16 2020 *)
-
Sage
[i for i in range(72) if gcd(11, i) == 1]
Formula
a(n) = a(n-10) + 11, n>10. - R. J. Mathar, May 20 2009
G.f.: x*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10) / ( (1+x)*(1+x+x^2+x^3+x^4)*(x^4-x^3+x^2-x+1)*(x-1)^2 ). - R. J. Mathar, May 02 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = (cot(Pi/11) - cot(2*Pi/11) + tan(Pi/22) - tan(3*Pi/22) + tan(5*Pi/22)) * Pi/11. - Amiram Eldar, May 11 2025
Comments