cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160551 Number of unordered ways of making change for n dollars using coins of denominations 1, 5, 10, and 25.

Original entry on oeis.org

1, 242, 1463, 4464, 10045, 19006, 32147, 50268, 74169, 104650, 142511, 188552, 243573, 308374, 383755, 470516, 569457, 681378, 807079, 947360, 1103021, 1274862, 1463683, 1670284, 1895465, 2140026, 2404767, 2690488, 2997989, 3328070, 3681531, 4059172, 4461793
Offset: 0

Views

Author

Lee A. Newberg, May 18 2009, Jun 15 2009

Keywords

Comments

a(n) is the number of distinct quadruplets (p, k, d, q) of nonnegative integers satisfying p + 5k + 10d + 25q = 100n.

Examples

			There are four ways to make $0.10: (1) 10 pennies, (2) 5 pennies and 1 nickel, (3) 2 nickels, and (4) 1 dime.
		

Crossrefs

Cf. A001299.

Programs

  • Maple
    f := 1/(1-x)/(1-x^5)/(1-x^10)/(1-x^25); a := n -> (convert(series(f,x,100*n+1),polynom)-convert(series(f,x,100*n),polynom)) /x^(100*n);
    a := n -> (3 + 53*n + 270*n^2 + 400*n^3) / 3;
  • PARI
    a(n) = {(3 + 53*n + 270*n^2 + 400*n^3) / 3} \\ Andrew Howroyd, Feb 02 2020

Formula

a(n) = [x^(100*n)] 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)).
a(n) = (3 + 53*n + 270*n^2 + 400*n^3) / 3.
From Alois P. Heinz, Oct 08 2022: (Start)
a(n) = A001299(100*n).
G.f.: (60*x^3+501*x^2+238*x+1)/(x-1)^4. (End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 02 2020