A160551 Number of unordered ways of making change for n dollars using coins of denominations 1, 5, 10, and 25.
1, 242, 1463, 4464, 10045, 19006, 32147, 50268, 74169, 104650, 142511, 188552, 243573, 308374, 383755, 470516, 569457, 681378, 807079, 947360, 1103021, 1274862, 1463683, 1670284, 1895465, 2140026, 2404767, 2690488, 2997989, 3328070, 3681531, 4059172, 4461793
Offset: 0
Examples
There are four ways to make $0.10: (1) 10 pennies, (2) 5 pennies and 1 nickel, (3) 2 nickels, and (4) 1 dime.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A001299.
Programs
-
Maple
f := 1/(1-x)/(1-x^5)/(1-x^10)/(1-x^25); a := n -> (convert(series(f,x,100*n+1),polynom)-convert(series(f,x,100*n),polynom)) /x^(100*n); a := n -> (3 + 53*n + 270*n^2 + 400*n^3) / 3;
-
PARI
a(n) = {(3 + 53*n + 270*n^2 + 400*n^3) / 3} \\ Andrew Howroyd, Feb 02 2020
Formula
a(n) = [x^(100*n)] 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)).
a(n) = (3 + 53*n + 270*n^2 + 400*n^3) / 3.
From Alois P. Heinz, Oct 08 2022: (Start)
a(n) = A001299(100*n).
G.f.: (60*x^3+501*x^2+238*x+1)/(x-1)^4. (End)
Extensions
Terms a(21) and beyond from Andrew Howroyd, Feb 02 2020
Comments