cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A160565 Diagonal sums of number triangle [k<=n]*C(n,2n-2k)2^(n-k)A000108(n-k).

Original entry on oeis.org

1, 0, 1, 2, 1, 6, 9, 12, 41, 60, 121, 310, 505, 1162, 2577, 4760, 11089, 23256, 47089, 107274, 223345, 476366, 1061017, 2237796, 4888313, 10745748, 23048169, 50792638, 111180265, 241786898, 534219297
Offset: 0

Views

Author

Paul Barry, May 19 2009

Keywords

Comments

Hankel transform is A160566(n+1).
a(0)=1 followed by A025252. [From R. J. Mathar, May 20 2009]

Crossrefs

Cf.: A025250.

Formula

G.f.: (1-x^2-sqrt(1-2x^2-8x^3+x^4))/(4x^3);
G.f.: 1/(1-x^2-2*x^3/(1-x^2-2*x^3/(1-x^2-2*x^3/(1-x^2-2*x^3/(1-... (continued fraction).
a(n)=sum{k=0..floor(n/2), C(n-k,2n-4k)*2^(n-2k)*A000108(n-2k)};
a(n)=sum{k=0..n, C(n-k/2,2(n-k))*2^(n-k)*A000108(n-k)*(1+(-1)^k)/2};
a(n)=sum{k=0..n, C((n+k)/2,2k)*2^k*A000108(k)(1+(-1)^(n-k))/2}.
G.f.: (1/(1-x^2))c(2x^3/(1-x^2)^2) where c(x) is the g.f. of A000108. [From Paul Barry, May 20 2009]

A160569 a(n)=9*(a(n-1)a(n-3)-a(n-2)^2)/a(n-4), a(1)=a(2)=a(3)=1, a(4)=-9.

Original entry on oeis.org

1, 1, 1, -9, -90, -1539, 51759, 7026831, 1349328699, -119669884380, -462804380329131, -818173230956710191, -775566981773559330471, 23349606875054800260574779, 383206716517298992863985977570
Offset: 0

Views

Author

Paul Barry, May 19 2009

Keywords

Comments

a(n+1) is the Hankel transform of A160568.

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_}]:={b,c,d,(9(d*b-c^2))/a}; NestList[nxt,{1,1,1,-9},20][[All,1]] (* Harvey P. Dale, Feb 21 2022 *)

A160586 Denominator of Laguerre(n, -11).

Original entry on oeis.org

1, 1, 2, 3, 8, 30, 720, 210, 40320, 90720, 1209600, 226800, 43545600, 5241600, 7925299200, 14859936000, 634023936000, 8083805184000, 582033973248000, 115194223872000, 221172909834240000, 1161157776629760000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Crossrefs

For numerators see A160566.

Programs

  • Magma
    [Denominator((&+[Binomial(n,k)*(11^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 14 2018
  • Mathematica
    Denominator[Table[LaguerreL[n, -11], {n, 0, 50}]] (* G. C. Greubel, May 14 2018 *)
  • PARI
    for(n=0,30, print1(denominator(sum(k=0,n, binomial(n,k)*(11^k/k!))), ", ")) \\ G. C. Greubel, May 14 2018
    
Showing 1-3 of 3 results.