A160596 Denominator of resilience R(n) = phi(n)/(n-1).
1, 1, 3, 1, 5, 1, 7, 4, 9, 1, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 1, 23, 6, 25, 13, 9, 1, 29, 1, 31, 8, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 8, 49, 25, 17, 1, 53, 27, 55, 14, 57, 1, 59, 1, 61, 31, 63, 4, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 40, 81, 1
Offset: 2
Examples
a(9)=4 since for the denominator d=9, among the 8 proper fractions n/9 (n=1,...,8), six cannot be canceled down by a common factor (namely 1/9, 2/9, 4/9, 5/9, 7/9, 8/9), thus R(9) = 6/8 = 3/4.
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
- Project Euler, Problem 245: resilient fractions, May 2009
Programs
-
Magma
[Denominator(EulerPhi(n)/(n-1)): n in [2..80]]; // Vincenzo Librandi, Jan 02 2017
-
Maple
seq(denom(numtheory:-phi(n)/(n-1)),n=2..100); # Robert Israel, Dec 26 2016
-
Mathematica
Denominator[Table[EulerPhi[n]/(n-1),{n,2,90}]] (* Harvey P. Dale, Apr 18 2012 *)
-
PARI
A160496(n)=denominator(eulerphi(n)/(n-1))
Comments