cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A340083 a(n) = (n-1) / gcd(n-1, A003958(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 7, 2, 9, 1, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 1, 23, 3, 25, 13, 9, 1, 29, 1, 31, 8, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 4, 49, 25, 17, 1, 53, 27, 55, 14, 57, 1, 59, 1, 61, 31, 63, 4, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 5, 81, 1, 83, 21, 85, 43, 87, 1, 89, 5, 91, 23
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    A340083(n) = ((n-1)/gcd(n-1, A003958(n)));

Formula

a(n) = (n-1) / A340081(n) = (n-1) / gcd(n-1, A003958(n)).

A339966 a(n) = (n+1) / gcd(sigma(n),n+1).

Original entry on oeis.org

2, 1, 1, 5, 1, 7, 1, 3, 10, 11, 1, 13, 1, 5, 2, 17, 1, 19, 1, 1, 11, 23, 1, 5, 26, 9, 7, 29, 1, 31, 1, 11, 17, 35, 3, 37, 1, 13, 5, 41, 1, 43, 1, 15, 23, 47, 1, 49, 50, 17, 13, 53, 1, 11, 7, 19, 29, 59, 1, 61, 1, 21, 8, 65, 11, 67, 1, 23, 35, 71, 1, 73, 1, 25, 19, 11, 13, 79, 1, 27, 82, 83, 1, 85, 43, 29, 11, 89, 1, 7
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2020

Keywords

Crossrefs

Cf. A000203, A339964, A339965 (numerators).
Cf. A017666.
Cf. also A160596.

Programs

  • PARI
    A339966(n) = (n+1)/(gcd(sigma(n),n+1));

Formula

a(n) = (n+1) / A339964(n).
a(n) = denominator(sigma(n)/(n+1)). - Michel Marcus, Jan 07 2023

A340073 a(n) = (x-1) / gcd(x-1, phi(x)), where x = A003961(n), i.e., n with its prime factorization shifted one step towards larger primes.

Original entry on oeis.org

0, 1, 1, 4, 1, 7, 1, 13, 6, 5, 1, 11, 1, 8, 17, 40, 1, 37, 1, 31, 27, 19, 1, 67, 8, 25, 31, 49, 1, 13, 1, 121, 4, 14, 19, 28, 1, 17, 21, 47, 1, 41, 1, 29, 29, 43, 1, 101, 12, 73, 47, 19, 1, 187, 5, 74, 57, 23, 1, 157, 1, 55, 137, 364, 59, 97, 1, 85, 9, 23, 1, 337, 1, 61, 61, 103, 71, 127, 1, 283, 156, 32, 1, 247, 11
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Prime shifted analog of A160596.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A340073(n) = { my(x=A003961(n)); (x-1)/gcd(x-1, eulerphi(x)); };

Formula

a(n) = A160596(A003961(n)).
a(n) = A253885(n-1) / A340071(n) = (A003961(n)-1) / A340071(n).

A340086 a(1) = 0, for n > 1, a(n) = A000265(n-1) / gcd(n-1, A336466(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 1, 23, 3, 25, 13, 9, 1, 29, 1, 31, 1, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 1, 49, 25, 17, 1, 53, 27, 55, 7, 57, 1, 59, 1, 61, 31, 63, 1, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 5, 81, 1, 83, 21, 85, 43, 87, 1, 89
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Comments

From the second term onward, the odd part of A340083.

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A000265(n-1) / A340084(n) = A000265(A340083(n)).

A340089 a(n) = (n-1) / gcd(n-1, A091732(n)), where A091732 is an infinitary analog of Euler's phi function.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 7, 1, 1, 17, 1, 19, 5, 21, 1, 23, 1, 25, 13, 3, 1, 29, 1, 31, 8, 33, 17, 35, 1, 37, 19, 13, 1, 41, 1, 43, 11, 45, 1, 47, 1, 49, 25, 17, 1, 53, 27, 55, 14, 57, 1, 59, 1, 61, 31, 7, 4, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 1, 81, 1, 83, 21, 85, 43, 29, 1, 89
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Crossrefs

Cf. also A160596.

Programs

  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); };
    A340089(n) = ((n-1)/gcd(n-1, A091732(n)));

Formula

a(n) = (n-1) / A340087(n) = (n-1) / gcd(n-1, A091732(n)).

A342916 a(n) = (1+n) / gcd(1+n, A001615(n)), where A001615 is Dedekind psi, n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

2, 1, 1, 5, 1, 7, 1, 3, 5, 11, 1, 13, 1, 5, 2, 17, 1, 19, 1, 7, 11, 23, 1, 25, 13, 9, 7, 29, 1, 31, 1, 11, 17, 35, 3, 37, 1, 13, 5, 41, 1, 43, 1, 5, 23, 47, 1, 49, 25, 17, 13, 53, 1, 55, 7, 19, 29, 59, 1, 61, 1, 21, 2, 65, 11, 67, 1, 23, 35, 71, 1, 73, 1, 25, 19, 77, 13, 79, 1, 9, 41, 83, 1, 85, 43, 29, 11, 89, 1, 91, 23, 31
Offset: 1

Views

Author

Antti Karttunen, Mar 29 2021

Keywords

Comments

It is conjectured that a(n) = 1 only when n is a prime, A000040. See Thomas Ordowski's May 21 2017 problem in A001615.

Crossrefs

Cf. also A160596.
After n=1 differs from A342918 for the first time at n=44, where a(44) = 5, while A342918(44) = 15.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A342916(n) = ((1+n)/gcd(1+n,A001615(n)));

Formula

a(n) = (1+n) / A342915(n) = (1+n) / gcd(1+n, A001615(n)).

Extensions

Incorrect A-number in the formula corrected by Antti Karttunen, May 31 2021

A345939 a(n) = (n-1) / gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 1, 1, 9, 1, 11, 1, 13, 7, 1, 1, 17, 1, 19, 5, 21, 1, 23, 1, 25, 1, 3, 1, 29, 1, 1, 8, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 1, 49, 25, 17, 1, 53, 27, 55, 14, 57, 1, 59, 1, 61, 31, 1, 4, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 1, 81, 1, 83, 21, 85, 43, 87, 1, 89, 5, 91
Offset: 1

Views

Author

Antti Karttunen, Jun 29 2021

Keywords

Crossrefs

Programs

  • Mathematica
    uphi[1]=1;uphi[n_]:=Times@@(#[[1]]^#[[2]]-1&/@FactorInteger[n]);
    a[n_]:=(n-1)/GCD[n-1,uphi[n]];Array[a,100] (* Giorgos Kalogeropoulos, Jul 02 2021 *)
  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    A345939(n) = ((n-1) / gcd(n-1, A047994(n)));

Formula

a(n) = (n-1) / A345937(n) = (n-1) / gcd(n-1, A047994(n)).
a(2n-1) = A345949(2n-1), for n > 1.

A160598 Numerator of coresilience C(n) = (n - phi(n))/(n-1).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 4, 3, 2, 1, 8, 1, 8, 1, 8, 1, 12, 1, 12, 9, 4, 1, 16, 5, 14, 9, 16, 1, 22, 1, 16, 13, 6, 11, 24, 1, 20, 15, 8, 1, 30, 1, 24, 21, 8, 1, 32, 7, 30, 19, 28, 1, 36, 5, 32, 3, 10, 1, 44, 1, 32, 27, 32, 17, 46, 1, 36, 25, 2, 1, 48, 1, 38, 35, 8, 17, 54, 1, 48, 27, 14, 1, 60, 1
Offset: 2

Views

Author

M. F. Hasler, May 23 2009

Keywords

Comments

Obviously C(p) = 1/(p-1), i.e., a(p)=1, for all primes p. Sequence A160599 lists composite numbers for which this is the case.

Examples

			a(10)=2 since for n=10, we have (n - phi(n))/(n-1) = (10-4)/9 = 2/3.
		

Crossrefs

Programs

  • Magma
    [Numerator((n-EulerPhi(n))/(n-1)): n in [2..80]]; // Vincenzo Librandi, Dec 27 2016
  • Mathematica
    Numerator[Table[(n - EulerPhi[n])/(n - 1), {n, 2, 90}]] (* Vincenzo Librandi, Dec 27 2016 *)
  • PARI
    A160598(n)=numerator((n-eulerphi(n))/(n-1))
    
Showing 1-8 of 8 results.