cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A160650 a(n) = A001222(A160649(n)) = A160649(n+1) - A160649(n); where A001222(m) is the sum of prime-factorization exponents of m (or, A001222(m) is the number of primes dividing m, counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 3, 2, 1, 3, 2, 1, 4, 3, 1, 5, 1, 2, 4, 3, 1, 5, 1, 4, 2, 4, 6, 3, 1, 2, 3, 1, 5, 2, 2, 1, 4, 2, 6, 3, 3, 5, 1, 3, 3, 5, 3, 7, 4, 1, 4, 6, 4, 3, 1, 2, 6, 2, 5, 1, 3, 2, 1, 5, 2, 2, 4, 1, 2, 4, 5, 2, 3, 4, 2, 6, 3, 4, 1, 3, 1, 4, 3, 1, 3, 3, 4, 5, 1, 3, 3, 5, 1, 5, 3, 2, 5, 3, 7, 2, 4, 2, 2, 2, 1
Offset: 1

Views

Author

Leroy Quet, May 21 2009

Keywords

Crossrefs

Extensions

Extended by Ray Chandler, Jun 16 2009

A375508 Begin A160649 with n instead of 2; a(n) is the position in the new sequence at which it generates the same numbers as A160649 or a(n)=0 if it doesn't.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 5, 4, 1, 3, 1, 1, 3, 2, 1, 2, 1, 1, 6, 2, 5, 1, 5, 4, 1, 1, 3, 3, 2, 2, 1, 1, 5, 1, 4, 3, 2, 1, 2, 2, 1, 1, 3, 2, 2, 5, 1, 1, 4, 2, 3, 1, 2, 1, 3, 2, 7, 1, 7, 6, 6, 5, 5, 1, 4, 3, 1, 1, 4, 1, 2, 3, 1, 1, 2, 9, 9, 8, 1, 8, 1, 7
Offset: 1

Views

Author

James C. McMahon, Aug 18 2024

Keywords

Comments

The indices of the matching entries of A160649 and this sequence do not necessarily have to be the same (see Examples).

Examples

			Using () to indicate the point at which the new sequence generates the same numbers as A160649:
A160649: 2, 3, 4, 6, 8, 11, 12...  a(1)=1
Start=3: (3), 4, 6, 8, 11, 12...   a(2)=1
Start=4: (4), 6, 8, 11, 12, 15...  a(3)=1
Start=5: 5, (6), 8, 11, 12, 15...  a(4)=2
		

Crossrefs

Cf. A160649.

Programs

  • Mathematica
    Lim=88;pseq1=NestList[#+PrimeOmega[#]&,2,Lim] (* pseq1 is base sequence A160649 *); pseq={}; Do[ i=1; s=n; While[!MemberQ[pseq1, s], s=s+PrimeOmega[s]; i++]; AppendTo[pseq, i], {n,2, Lim}];pseq (* pseq is A375508 *)

A094222 a(n+1) = a(n) + (number of distinct prime factors of a(n)) for n>1; a(1)=1, a(2)=2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 17, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 38, 40, 42, 45, 47, 48, 50, 52, 54, 56, 58, 60, 63, 65, 67, 68, 70, 73, 74, 76, 78, 81, 82, 84, 87, 89, 90, 93, 95, 97, 98, 100, 102, 105, 108, 110, 113, 114, 117, 119, 121, 122, 124
Offset: 1

Views

Author

Reinhard Zumkeller, May 28 2004

Keywords

Crossrefs

Programs

  • Maple
    A094222 := proc(n)
        option remember;
        if n <= 2 then
            n;
        else
            procname(n-1)+A001221(procname(n-1)) ;
        end if;
    end proc:
    seq(A094222(n),n=1..30) ; # R. J. Mathar, Jul 09 2016
  • Mathematica
    a[1] = 1; a[2] = 2; a[n_] := a[n] = a[n-1] + PrimeNu[a[n-1]]; Array[a, 66] (* Jean-François Alcover, Sep 13 2016 *)

A337455 Numbers of the form m + bigomega(m) with m a positive integer.

Original entry on oeis.org

1, 3, 4, 6, 8, 11, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 47, 48, 51, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 84, 85, 87, 88, 89, 90, 92, 93
Offset: 1

Views

Author

Nathan J. McDougall, Aug 27 2020

Keywords

Comments

If a(n) = m + A001222(m) then (a(n) - m) <= log(a(n))/log(2).
It appears that a(n)/n may converge to a constant around ~ 1.49.

Examples

			a(7) = 10 + A001222(10) = 10 + 2 = 12
		

Crossrefs

Cf. A001222 (bigomega), A064800, A358973.
Numbers of the form k^n+n where k is prime are subsequences: A006127 (k=2), A104743 (k=3), A104745 (k=5), A226199 (k=7), A226737 (k=11).
Subsequences include A008864, A101340, and A160649 (excluding the first term).

Programs

  • Mathematica
    m = 100; Select[Union @ Table[n + PrimeOmega[n], {n, 1, m}], # <= m &] (* Amiram Eldar, Aug 28 2020 *)
  • PARI
    upto(limit)=Set(select(t->t<=limit, apply(m->m+bigomega(m), [1..limit]))) \\ Andrew Howroyd, Aug 27 2020
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=1, lim\1-1, my(t=n[1]+bigomega(n)); if(t<=lim, listput(v, t))); Set(v) \\ Charles R Greathouse IV, Dec 07 2022

Formula

Kucheriaviy proves that a(n) << n log log n and conjectures that a(n) ≍ n, that is, these numbers have positive lower density. - Charles R Greathouse IV, Dec 07 2022
Showing 1-4 of 4 results.