A160683 Numbers n >= 1 such that A000045(n)/A000005(A000045(n)) is an integer.
1, 2, 3, 6, 24, 48
Offset: 1
Links
- Florian Luca and Paul Thomas Young, On the number of divisors of n! and of the Fibonacci numbers, Glasnik Matematicki, Vol. 47, No. 2 (2012), 285-293. DOI: 10.3336/gm.47.2.05.
Programs
-
Maple
with(combinat):with(numtheory): A160683 := proc(n) option remember: local k: if(n=1)then return 1:fi: for k from procname(n-1)+1 do if(fibonacci(k) mod tau(fibonacci(k))=0)then return k:fi: od: end: seq(A160683(n), n=1..6); # Nathaniel Johnston, May 09 2011
-
Mathematica
Select[Range@ 120, IntegerQ[#/DivisorSigma[0, #]] &@ Fibonacci@ # &]
-
PARI
isok(n) = my(f=fibonacci(n)); f % numdiv(f) == 0; \\ Michel Marcus, Jul 31 2015
Comments