A160748 Primes whose digits are primes and reverse is prime.
2, 3, 5, 7, 37, 73, 337, 353, 373, 727, 733, 757, 3257, 3373, 3527, 3733, 7253, 7523, 7577, 7757, 32233, 32257, 32323, 32353, 32377, 32537, 33223, 33533, 35227, 35257, 35323, 35327, 35353, 35537, 35753, 37273, 37573, 72227, 72253, 72337, 72353
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..8096
Programs
-
Magma
[p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [2,3,5,7] and IsPrime(Seqint(Reverse(Intseq(p))))]; // Vincenzo Librandi, Dec 04 2015
-
Maple
listtoint:= proc(L) local i; add(L[i]*10^(i-1),i=1..nops(L)) end proc: f:= proc(L) local s; s:= listtoint(L); if isprime(s) and isprime(listtoint(ListTools:-Reverse(L))) then s fi end proc: Cands:= [[3],[7]]: A:= 2,3,5,7: for m from 2 to 6 do Cands:= map(t -> seq([op(t),j], j=[2,3,5,7]), Cands); A:= A, op(sort(map(f,Cands))); od: A; # Robert Israel, Dec 04 2015
-
Mathematica
okQ[p_] := PrimeQ[IntegerReverse[p] && AllTrue[IntegerDigits[p], PrimeQ]]; Select[Prime[Range[10^4]], okQ] (* Jean-François Alcover, Feb 06 2018 *)
Comments