A160765 Expansion of (1+13*x+32*x^2+13*x^3+x^4)/(1-x)^5.
1, 18, 112, 403, 1071, 2356, 4558, 8037, 13213, 20566, 30636, 44023, 61387, 83448, 110986, 144841, 185913, 235162, 293608, 362331, 442471, 535228, 641862, 763693, 902101, 1058526, 1234468, 1431487, 1651203, 1895296, 2165506, 2463633, 2791537
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(n^2+n+1)*(5*n^2+5*n+2)/2: n in [0..40]] // Bruno Berselli, Jul 31 2015
-
Mathematica
Table[(n^2 + n + 1) (5 n^2 + 5 n + 2)/2, {n, 0, 40}] (* Bruno Berselli, Jul 31 2015 *)
-
PARI
for(n=0,30, print1((n^2+n+1)*(5*n^2+5*n+2)/2, ", ")) \\ G. C. Greubel, Apr 26 2018
-
Sage
[(n^2+n+1)*(5*n^2+5*n+2)/2 for n in (0..40)] # Bruno Berselli, Jul 31 2015
Formula
G.f.: (1+13*x+32*x^2+13*x^3+x^4)/(1-x)^5.
a(n) = (n^2+n+1)*(5*n^2+5*n+2)/2. - R. J. Mathar, Sep 11 2011
E.g.f.: (1/2)*(5*x^4 + 40*x^3 + 77*x^2 + 34*x + 2)*exp(x). - G. C. Greubel, Apr 26 2018
Comments