cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160765 Expansion of (1+13*x+32*x^2+13*x^3+x^4)/(1-x)^5.

Original entry on oeis.org

1, 18, 112, 403, 1071, 2356, 4558, 8037, 13213, 20566, 30636, 44023, 61387, 83448, 110986, 144841, 185913, 235162, 293608, 362331, 442471, 535228, 641862, 763693, 902101, 1058526, 1234468, 1431487, 1651203, 1895296, 2165506, 2463633, 2791537
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Crossrefs

Programs

  • Magma
    [(n^2+n+1)*(5*n^2+5*n+2)/2: n in [0..40]] // Bruno Berselli, Jul 31 2015
    
  • Mathematica
    Table[(n^2 + n + 1) (5 n^2 + 5 n + 2)/2, {n, 0, 40}] (* Bruno Berselli, Jul 31 2015 *)
  • PARI
    for(n=0,30, print1((n^2+n+1)*(5*n^2+5*n+2)/2, ", ")) \\ G. C. Greubel, Apr 26 2018
  • Sage
    [(n^2+n+1)*(5*n^2+5*n+2)/2 for n in (0..40)] # Bruno Berselli, Jul 31 2015
    

Formula

G.f.: (1+13*x+32*x^2+13*x^3+x^4)/(1-x)^5.
a(n) = (n^2+n+1)*(5*n^2+5*n+2)/2. - R. J. Mathar, Sep 11 2011
a(n) = A000566(A002061(n+1)). - Bruno Berselli, Jul 31 2015
E.g.f.: (1/2)*(5*x^4 + 40*x^3 + 77*x^2 + 34*x + 2)*exp(x). - G. C. Greubel, Apr 26 2018