cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160790 Vertex number of a rectangular spiral. The first differences (A160791) are the edge lengths of the spiral. The distances between two nearest edges, that are parallel to the initial edge, are the natural numbers.

Original entry on oeis.org

0, 1, 2, 4, 7, 10, 16, 20, 30, 35, 50, 56, 77, 84, 112, 120, 156, 165, 210, 220, 275, 286, 352, 364, 442, 455, 546, 560, 665, 680, 800, 816, 952, 969, 1122, 1140, 1311, 1330, 1520, 1540, 1750, 1771, 2002, 2024, 2277, 2300, 2576, 2600, 2900, 2925, 3250, 3276, 3627, 3654, 4032, 4060, 4466, 4495, 4930, 4960, 5425
Offset: 0

Views

Author

Omar E. Pol, May 29 2009

Keywords

Crossrefs

Programs

  • Maple
    A160791 := proc(n) if type(n,'odd') then ceil(n/2) ; else A000217(n/2) ; end if; end proc:
    A160790 := proc(n) if n = 0 then 0; else add(A160791(i),i=0..n) ; end if; end proc:
    seq(A160790(n),n=0..60) ;
  • Mathematica
    Table[(2*n + 3 + (-1)^n)*(2*n + 3 - 3*(-1)^n)*(2*n + 15 + 5*(-1)^n)/ 384, {n, 0, 60}] (* Michael De Vlieger, Mar 31 2015 *)
  • PARI
    Vec(-x*(-1-x+x^2) / ( (1+x)^3*(x-1)^4 ) + O(x^80)) \\ Michel Marcus, Apr 01 2015

Formula

a(n) = +a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7).
G.f.: -x*(-1-x+x^2) / ( (1+x)^3*(x-1)^4 ).
a(n) = (2*n+3+(-1)^n)*(2*n+3-3*(-1)^n)*(2*n+15+5*(-1)^n)/384. - Luce ETIENNE, Mar 31 2015

Extensions

Edited by Omar E. Pol, Feb 08 2010