A160815 Expansion of (1+62*x+562*x^2+1023*x^3+458*x^4+49*x^5+x^6)/(1-x)^7.
1, 69, 1024, 6777, 28773, 92589, 246688, 573329, 1201633, 2322805, 4207512, 7225417, 11866869, 18766749, 28730472, 42762145, 62094881, 88223269, 122938000, 168362649, 226992613, 301736205, 395957904, 513523761, 658848961
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[539*n^6/180 +151*n^5/15 +335*n^4/18 +19*n^3 +2231*n^2/180 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
-
Mathematica
CoefficientList[Series[(1+62*x+562*x^2+1023*x^3+458*x^4+49*x^5+x^6)/(1-x)^7, {x, 0, 50}], x] (* G. C. Greubel, Apr 26 2018 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,69,1024,6777,28773,92589,246688},30] (* Harvey P. Dale, Sep 16 2019 *)
-
PARI
x='x+O('x^30); Vec((1+62*x+562*x^2+1023*x^3+458*x^4+49*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018
Formula
a(n) = 539*n^6/180 +151*n^5/15 +335*n^4/18 +19*n^3 +2231*n^2/180 +74*n/15 +1. - R. J. Mathar, Sep 11 2011
Comments