cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A161020 All the non-repdigit terms of A160818.

Original entry on oeis.org

370, 407, 481, 518, 592, 629, 370370, 407407, 481481, 518518, 592592, 629629, 370370370, 407407407, 456790123, 469135802, 481481481, 493827160, 506172839, 518518518, 530864197, 543209876, 592592592, 629629629, 370370370370
Offset: 1

Views

Author

Johan Särnbratt, Jun 02 2009

Keywords

Comments

All known terms are multiples of 111/3 = 37.
Non-repdigit numbers n such that ((10^A055642(n)-1)/9)*(A007953(n)/A055642(n)) = n. So the sequence is infinite. - Altug Alkan, Sep 05 2016

Examples

			For example with 370: (073+037+307+370+703+730)/6 = 370.
		

Crossrefs

Programs

  • Maple
    read("transforms3") ; isrep := proc(n) if nops(convert(convert(n,base,10),set)) = 1 then true; else false; fi; end: a160818 := BFILETOLIST("b160818.txt") ; for i from 1 to 400 do a := op(i,a160818) ; if not isrep(a) then printf("%d,",a) ; fi; od: # R. J. Mathar, Jul 04 2009

Extensions

More terms from R. J. Mathar, Jul 04 2009

A214019 a(n) is the smallest positive number such that n divides the sum of all numbers formed by cyclically permuting digits of a(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 370, 407, 444, 481, 518, 555, 592, 629, 666, 777, 888, 999, 1111, 1818, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 11111, 22222, 33333, 44444, 55555, 66666, 77777, 88888, 99999
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 01 2012

Keywords

Comments

Many terms in this sequence are the same as A160818(n) but not all.

Examples

			For example with 481: 481 + 814 + 148 = 1443 and 481 divides 1443.
		

Crossrefs

Cf. A160818.

Programs

  • Mathematica
    lst = {}; cycDigitPerms[n_Integer, b_: 10] := Module[{list = {n}, digits = IntegerDigits[n, b], len, counter, holder, next}, len = Length[digits]; counter = 1; While[counter < len, holder = digits[[-1]]; digits = Drop[digits, -1]; digits = Insert[digits, holder, 1]; list = Append[list, FromDigits[digits, b]]; counter++]; Return[list]]; Do[If[Divisible[Total@cycDigitPerms[n], n], AppendTo[lst, n]], {n, 10^5}]; lst (* Most of the code is from Alonso del Arte *)
Showing 1-2 of 2 results.