cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Johan Särnbratt

Johan Särnbratt's wiki page.

Johan Särnbratt has authored 5 sequences.

A192734 Smallest number having binary weight of 3 and n distinct prime factors.

Original entry on oeis.org

7, 21, 273, 16401, 1048593, 4295032833, 1099512676353, 9007199256838145, 302231455185132270387201, 1208944266358702884257793, 1329227995784915872903807060297121793, 1393796574908163946347162983661240005427201
Offset: 1

Author

Johan Särnbratt, Jul 08 2011

Keywords

Comments

Written in binary, these numbers have exactly three 1 bits and the other bits are all 0's. This means that these numbers are of the sum of 1 plus two larger distinct powers of 2. - Alonso del Arte, Jul 08 2011
a(n) > A002110(n). [Reinhard Zumkeller, Jul 09 2011]
Sequence is not monotone: a(12) > a(13). [Charles R Greathouse IV, Jul 11 2011]

Crossrefs

Programs

  • Haskell
    a192734 n = head [x | x <- [2^u + 2^v + 1 | u <- [2..], v <- [1..u-1]],
                          a001221 x == n]
    -- Reinhard Zumkeller, Jun 14 2015, Jul 09 2011
  • Mathematica
    list = {7}; For[max = 1; n = 2, n < 120,
    For[m = 0, m < n,
      tal = 2*(2^n + 2^m) + 1; num = PrimeNu[tal];
      If[num > max, AppendTo[list, tal]; max = num]
      , m++], n++] (* Sarnbratt *)
    A084468 = Flatten[Table[2^m + 2^n + 1, {m, 2, 80}, {n, m - 1}]]; Flatten[Table[Take[Select[A084468, PrimeNu[#] == n &], 1], {n, 10}]] (* Alonso del Arte, Jul 08 2011 *)
  • PARI
    a(n)={
      my(t);
      for(a=2,9e9,
        t=1+1<Charles R Greathouse IV, Jul 08 2011
    

Extensions

a(9) corrected by Charles R Greathouse IV, Jul 08 2011
a(12) from Charles R Greathouse IV, Jul 11 2011

A159078 Number of perfect powers with distinct digits in base n.

Original entry on oeis.org

1, 1, 9, 8, 25, 50, 88, 297, 657, 1418, 3212, 8662, 24185, 64103, 183718
Offset: 2

Author

Johan Särnbratt, Apr 04 2009

Keywords

Examples

			The 8 powers with unique digits in base 5 are 1, 4, 8, 9, 16, 27, 144, and 576; in base 5 these are 1, 4, 13, 14, 31, 102, 1304, and 4301.
		

Crossrefs

Programs

  • PARI
    okdigs(digs) = {for (i = 1, #digs-1, for (j = i+1, #digs, if (digs[j] == digs[i], return (0);););); return (1);}
    a(n) = {b = n; sols = Set([1]); vmax = b^b; pmax = ceil(log(vmax)/log(2)); for (p = 2, pmax, i = 2; while ((iep = i^p) < vmax, if (okdigs(digits(iep, b)), sols = Set(concat(sols, iep));); i++;);); #sols;} \\ Michel Marcus, Aug 19 2013

Extensions

a(11) - a(16) from Johan Särnbratt, Apr 21 2009

A161020 All the non-repdigit terms of A160818.

Original entry on oeis.org

370, 407, 481, 518, 592, 629, 370370, 407407, 481481, 518518, 592592, 629629, 370370370, 407407407, 456790123, 469135802, 481481481, 493827160, 506172839, 518518518, 530864197, 543209876, 592592592, 629629629, 370370370370
Offset: 1

Author

Johan Särnbratt, Jun 02 2009

Keywords

Comments

All known terms are multiples of 111/3 = 37.
Non-repdigit numbers n such that ((10^A055642(n)-1)/9)*(A007953(n)/A055642(n)) = n. So the sequence is infinite. - Altug Alkan, Sep 05 2016

Examples

			For example with 370: (073+037+307+370+703+730)/6 = 370.
		

Crossrefs

Programs

  • Maple
    read("transforms3") ; isrep := proc(n) if nops(convert(convert(n,base,10),set)) = 1 then true; else false; fi; end: a160818 := BFILETOLIST("b160818.txt") ; for i from 1 to 400 do a := op(i,a160818) ; if not isrep(a) then printf("%d,",a) ; fi; od: # R. J. Mathar, Jul 04 2009

Extensions

More terms from R. J. Mathar, Jul 04 2009

A136332 a(n) is the smallest term appearing after a(n-1) in A067581.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 21, 29, 31, 32, 35, 36, 37, 38, 39, 43, 48, 49, 53, 54, 55, 56, 65, 67, 75, 76, 77, 78, 86, 87, 88, 89, 95, 96, 97, 98, 99, 106, 107, 108, 109, 110, 111, 112, 120, 123, 132, 192, 210, 212, 213, 231, 251, 312, 318, 319, 321, 324
Offset: 1

Author

Johan Särnbratt, Mar 27 2008

Keywords

Examples

			a(13) = 21 because 21 is the lowest term appearing after 12 in A067581
		

Crossrefs

Cf. A067581.

A139803 A033875(n) + 2^a(n) = A033875(n+1).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 3, 4, 5, 2, 7, 4, 1, 2, 3, 4, 9, 2, 955, 468
Offset: 1

Author

Johan Särnbratt, May 22 2008

Keywords

Comments

a(23) > 10^4. - Zak Seidov, Jan 24 2017
a(23) > 30000 (if it exists). - Pontus von Brömssen, Jan 08 2023

Examples

			a(10) = 4 because A033875(10) = 31, 31 + 2^4 = 47, which is prime.
		

Crossrefs

Skipping from prime to prime by least powers of 2: A033875.

Programs

  • Mathematica
    p = 2; n = 0; While[true, x = 0; While[ ! PrimeQ[p + 2^x], x++ ]; p = p + 2^x; Print[x]; n++ ]

Formula

a(n) = A067760((A033875(n)-1)/2) for n >= 2. - Pontus von Brömssen, Jan 08 2023