cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160829 Expansion of (1 + 44*x + 337*x^2 + 612*x^3 + 305*x^4 + 40*x^5 + x^6)/(1 - x)^7.

Original entry on oeis.org

1, 51, 673, 4287, 17931, 57321, 152251, 353333, 740077, 1430311, 2590941, 4450051, 7310343, 11563917, 17708391, 26364361, 38294201, 54422203, 75856057, 103909671, 140127331, 186309201, 244538163, 317207997, 407052901, 517178351
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [(1/36)*(36 + 174*n + 391*n^2 + 513*n^3 + 442*n^4 + 213*n^5 + 67*n^6): n in [0..30]]; // G. C. Greubel, Apr 28 2018
  • Maple
    seq(coeff(series((1+44*x+337*x^2+612*x^3+305*x^4+40*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,51,673,4287,17931,57321, 152251},30] (* or *) CoefficientList[Series[ (1+44x+337x^2+612x^3+ 305x^4+ 40x^5+x^6)/(1-x)^7,{x,0,30}],x] (* Harvey P. Dale, Jun 21 2011 *)
  • PARI
    x='x+O('x^99); Vec((1+44*x+337*x^2+612*x^3+305*x^4+40*x^5+x^6)/(1-x)^7) \\ Altug Alkan, Aug 16 2017
    

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7), with a(0)=1, a(1)=51, a(2)=673, a(3)=4287, a(4)=17931, a(5)=57321, a(6)=152251. - Harvey P. Dale, Jun 21 2011
a(n) = (1/36)*(36 + 174*n + 391*n^2 + 513*n^3 + 442*n^4 + 213*n^5 + 67*n^6). - Harvey P. Dale, Jun 21 2011, corrected by Eric Rowland, Aug 15 2017