A160839 Expansion of (78+1116*x+3492*x^2+3237*x^3+927*x^4+72*x^5+x^6)/(1-x)^7.
78, 1662, 13488, 65481, 231486, 660921, 1619353, 3537997, 7072138, 13168476, 23141394, 38758149, 62332986, 96830175, 145975971, 214379497, 307662550, 432598330, 597259092, 811172721, 1085488230, 1433150181, 1869082029
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[8923*n^6/720 +18691*n^5/240 +35375*n^4/144 +7219*n^3/16 +178361*n^2/360 +9043*n/30 + 78: n in [0..30]]; // Vincenzo Librandi, Sep 19 2011
-
Maple
seq(coeff(series((78+1116*x+3492*x^2+3237*x^3+927*x^4+72*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
-
Mathematica
Table[8923*n^6/720 +18691*n^5/240 +35375*n^4/144 +7219*n^3/16 +178361*n^2/360 +9043*n/30 + 78, {n, 0, 30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1}, {78, 1662, 13488, 65481, 231486, 660921, 1619353}, 30] (* G. C. Greubel, Apr 28 2018 *)
-
PARI
x='x+O('x^30); Vec((78+1116*x+3492*x^2+3237*x^3+927*x^4 +72*x^5 +x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018
Formula
a(n) = 8923*n^6/720 +18691*n^5/240 +35375*n^4/144 +7219*n^3/16 +178361*n^2/360 +9043*n/30 + 78. - R. J. Mathar, Sep 11 2011
Comments