cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160852 Chebyshev transform of A107841.

Original entry on oeis.org

1, 2, 11, 66, 461, 3448, 27061, 219702, 1829851, 15547142, 134224361, 1174119120, 10383783641, 92691197962, 834047700091, 7557110252538, 68890745834341, 631392034936040, 5814520777199261, 53776065007163886, 499275423496447211
Offset: 0

Views

Author

Paul Barry, May 28 2009

Keywords

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+x-x^2-Sqrt(1-10*x-x^2+10*x^3+x^4))/(6*x*(1-x^2)))) // G. C. Greubel, Apr 30 2018
  • Mathematica
    CoefficientList[Series[(1+x-x^2-Sqrt[1-10x-x^2+10x^3+x^4])/(6x(1-x^2)),{x,0,20}],x] (* Harvey P. Dale, Aug 12 2011 *)
  • PARI
    x='x+O('x^30); Vec((1+x-x^2-sqrt(1-10*x-x^2+10*x^3+x^4))/(6*x*(1-x^2))) \\ G. C. Greubel, Apr 30 2018
    

Formula

G.f.: (1+x-x^2-sqrt(1-10*x-x^2+10*x^3+x^4))/(6*x*(1-x^2)).
G.f.: 1/(1-2x-x^2-6x^2/(1-5x-x^2-6x^2/(1-5x-x^2-6x^2/(1-5-x^2-6x^2/(1-... (continued fraction).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*A107841(n-2*k).
Recurrence: (n+1)*a(n) = (n-5)*a(n-6) + 5*(2*n-7)*a(n-5) - (2*n-7)*a(n-4) - 20*(n-2)*a(n-3) + (2*n-1)*a(n-2) + 5*(2*n-1)*a(n-1). - R. J. Mathar, Jul 24 2012, simplified by Fung Lam, Jan 27 2014
a(n) ~ r*(r+10) * sqrt(10*r^3-2*r^2-30*r+4) / (12 * sqrt(Pi) * n^(3/2) * r^(n+1)), where r = 1 / (5/2 + sqrt(6) + 1/2*sqrt(53+20*sqrt(6))) = 0.100010105114224353... - Vaclav Kotesovec, Feb 27 2014