A160853 Expansion of (1+147*x+1230*x^2+1925*x^3+754*x^4+67*x^5+x^6)/(1-x)^7.
1, 154, 2287, 14735, 61227, 193897, 510420, 1175273, 2445121, 4698328, 8468593, 14482711, 23702459, 37370607, 57061054, 84733089, 122789777, 174140470, 242267443, 331296655, 446072635, 592237493, 776314056, 1005793129
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[1 +n*(n+1)*(1375*n^4+4022*n^3+6573*n^2+4582*n+1808)/240: n in [0..30]]; // Vincenzo Librandi, Sep 20 2011
-
Maple
seq(coeff(series((1+147*x+1230*x^2+1925*x^3+754*x^4+67*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
-
Mathematica
LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 154, 2287, 14735, 61227, 193897, 510420}, 40] (* G. C. Greubel, Apr 28 2018 *)
-
PARI
x='x+O('x^30); Vec((1+147*x+1230*x^2+1925*x^3+754*x^4+67*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018
Formula
a(n) = 1 +n*(n+1)*(1375*n^4+4022*n^3+6573*n^2+4582*n+1808)/240. - R. J. Mathar, Sep 17 2011
Comments