cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160869 a(n) = sigma(6^(n-1)).

Original entry on oeis.org

1, 12, 91, 600, 3751, 22932, 138811, 836400, 5028751, 30203052, 181308931, 1088123400, 6529545751, 39179682372, 235085301451, 1410533397600, 8463265086751, 50779784492892, 304679288612371, 1828077476115000, 10968470088963751, 65810836228506612
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2009

Keywords

Crossrefs

Row 6 of array in A160870.

Programs

  • Magma
    [(2^n-1)*(3^n-1)/2: n in [1..50]]; // G. C. Greubel, Apr 30 2018
  • Mathematica
    Table[(2^n-1)*(3^n-1)/2,{n,40}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *)
    LinearRecurrence[{12,-47,72,-36}, {1, 12, 91, 600}, 50] (* G. C. Greubel, Apr 30 2018 *)
  • PARI
    Vec(-x*(6*x^2-1)/((x-1)*(2*x-1)*(3*x-1)*(6*x-1)) + O(x^100)) \\ Colin Barker, Nov 24 2014
    
  • PARI
    for(n=1, 50, print1((2^n-1)*(3^n-1)/2, ", ")) \\ G. C. Greubel, Apr 30 2018
    

Formula

a(n) = A059387(n)/2. - Vladimir Joseph Stephan Orlovsky, Apr 28 2010
a(n) = 12*a(n-1)-47*a(n-2)+72*a(n-3)-36*a(n-4). - Colin Barker, Nov 24 2014
G.f.: -x*(6*x^2-1) / ((x-1)*(2*x-1)*(3*x-1)*(6*x-1)). - Colin Barker, Nov 24 2014
a(n) = A000203(A000400(n-1)). - Michel Marcus, Sep 18 2018

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Apr 28 2010
More terms from Colin Barker, Nov 24 2014
Better definition from Altug Alkan, Oct 06 2015