cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160967 Numbers of the form (4^k - 1)/3 or 2^k.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 16, 21, 32, 64, 85, 128, 256, 341, 512, 1024, 1365, 2048, 4096, 5461, 8192, 16384, 21845, 32768, 65536, 87381, 131072, 262144, 349525, 524288, 1048576, 1398101, 2097152, 4194304, 5592405, 8388608, 16777216, 22369621, 33554432
Offset: 0

Views

Author

Reinhard Zumkeller, May 31 2009

Keywords

Comments

A139391(a(n)) = 1 for n > 0.
Except for the first seven terms, the 3x + 1 trajectory for every number in this sequence includes 32. - Alonso del Arte, Jan 01 2015
For n>0, the Collatz-function starting with a(n) will terminate at 1. This is because all numbers of the form 2^k will terminate at 1, and ((4^k - 1)/3)*3 + 1 = 4^k = 2^2k. - Bob Selcoe, Apr 03 2015

Crossrefs

Union of A002450 and A000079.

Programs

  • Haskell
    a160967 n = a160967_list !! n
    a160967_list = m a000079_list a002450_list where
       m xs'@(x:xs) ys'@(y:ys) | x < y     = x : m xs ys'
                               | x == y    = x : m xs ys
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Magma
    I:=[0,1,2,4,5,8,16]; [n le 7 select I[n] else 5*Self(n-3)-4*Self(n-6): n in [1..40]]; // Vincenzo Librandi, Apr 03 2015
  • Maple
    0, seq(op([(4^j-1)/3, 4^j/2,4^j]),j=1..20); # Robert Israel, Jan 01 2015
  • Mathematica
    Union[2^Range[0, 25], (4^Range[0, 13] - 1)/3] (* Alonso del Arte, Jan 01 2015 *)
    Join[{0}, LinearRecurrence[{0, 0, 5, 0, 0, -4}, {1, 2, 4, 5, 8, 16}, 50]] (* Vincenzo Librandi, Apr 03 2015 *)

Formula

G.f.: x*(1 + 2*x + 4*x^2 - 2*x^4 - 4*x^5)/(1-5*x^3+4*x^6).
a(n+6) = 5*a(n+3) - 4*a(n) for n >= 1. - Robert Israel, Jan 01 2015