cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A161120 Number of cycles with entries of opposite parities in all fixed-point-free involutions of {1,2,...,2n}.

Original entry on oeis.org

0, 1, 4, 27, 240, 2625, 34020, 509355, 8648640, 164189025, 3445942500, 79222218075, 1979900722800, 53443570205025, 1549547301802500, 48028060502296875, 1584712538529120000, 55458748565165570625
Offset: 0

Views

Author

Emeric Deutsch, Jun 02 2009

Keywords

Examples

			a(2)=4 because in the 3 fixed-point-free involutions of {1,2,3,4}, namely (12)(34), (13)(24), (14)(23), we have a total of 4 cycles with entries of opposite parities.
		

Crossrefs

Programs

  • Maple
    seq(n^2*(product(2*j-1, j = 1 .. n-1)), n = 0 .. 18);

Formula

a(n)=n^2*(2n-3)!!
a(n)=Sum(k*A161119(n,k), k=0..n)
E.g.f.: x(1-x)/(1-2x)^(3/2). [From Paul Barry, Sep 13 2010]
E.g.f.: x/2*U(0) where U(k)= 1 + (2*k+1)/(1 - x/(x + (k+1)/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 25 2012
D-finite with recurrence a(n) +(-2*n-1)*a(n-1) +a(n-2) +(-2*n+7)*a(n-3)=0. - R. J. Mathar, Jul 26 2022

A161121 Triangle read by rows: T(n,k) is the number of fixed-point-free involutions of {1,2,...,2n} having k cycles with entries of the same parity (0 <= k <= 2*floor(n/2)).

Original entry on oeis.org

1, 1, 2, 0, 1, 6, 0, 9, 24, 0, 72, 0, 9, 120, 0, 600, 0, 225, 720, 0, 5400, 0, 4050, 0, 225, 5040, 0, 52920, 0, 66150, 0, 11025, 40320, 0, 564480, 0, 1058400, 0, 352800, 0, 11025, 362880, 0, 6531840, 0, 17146080, 0, 9525600, 0, 893025, 3628800, 0, 81648000, 0
Offset: 0

Views

Author

Emeric Deutsch, Jun 02 2009

Keywords

Comments

Row n contains 1 + 2*floor(n/2) terms.
Sum of row n = (2n-1)!! (A001147).
a(n,0) = n! (A000142).
a(2n,2n) = A001818(n).
Sum_{k>=0} k*T(n,k) = n*(n-1)*(2n-3)!! = A161122(n).

Examples

			T(3,2)=9 because we have (12)(35)(46), (14)(26)(35), (16)(24)(35), (23)(15)(46), (25)(13)(46), (34)(15)(26), (36)(15)(24), (45)(13)(26), (56)(13)(24).
Triangle starts:
    1;
    1;
    2,   0,   1;
    6,   0,   9;
   24,   0,  72,   0,   9;
  120,   0, 600,   0, 225;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if n < k then 0 elif `mod`(k, 2) = 0 then binomial(n, k)^2*factorial(n-k)*(product(2*j-1, j = 1 .. (1/2)*k))^2 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. 2*floor((1/2)*n)) end do; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := If[EvenQ[k], (n-k)! Binomial[n, k]^2 ((k-1)!!)^2, 0];
    Table[T[n, k], {n, 0, 10}, {k, 0, 2 Quotient[n, 2]}] // Flatten (* Jean-François Alcover, Feb 01 2023 *)

Formula

T(n,k) = (n-k)!*binomial(n,k)^2*((k-1)!!)^2 if k is even; T(n,k) = 0 if k is odd.

A161122 Number of cycles with entries of the same parity in all fixed-point-free involutions of {1,2,...,2n}.

Original entry on oeis.org

0, 0, 2, 18, 180, 2100, 28350, 436590, 7567560, 145945800, 3101348250, 72020198250, 1814908995900, 49332526343100, 1438865351673750, 44826189802143750, 1485668004871050000, 52196469237802890000, 1937793920453432291250, 75801938653031321981250, 3116301922402398792562500
Offset: 0

Views

Author

Emeric Deutsch, Jun 02 2009

Keywords

Examples

			a(2)=2 because in the 3 permutations (12)(34), (13)(24), (14)(23) we have a total of 2 cycles with entries of the same parity.
		

Crossrefs

Programs

  • Magma
    DoubleFactorial:=func< n | &*[n..2 by -2] >; [ n*(n-1)*DoubleFactorial(2*n-3): n in [0..22]]; // Vincenzo Librandi, Jul 21 2017
  • Maple
    seq(n*(n-1)*(product(2*j-1, j = 1 .. n-1)), n = 0 .. 18);
  • Mathematica
    Table[n (n - 1) (2 n -3)!!, {n, 0, 20}] (* Vincenzo Librandi, Jul 21 2017 *)

Formula

a(n) = n(n-1)(2n-3)!!.
a(n) = Sum_{k>=0} k*A161121(n,k).
D-finite with recurrence (-n+2)*a(n) +n*(2*n-3)*a(n-1)=0. - R. J. Mathar, Jul 26 2022
Showing 1-3 of 3 results.