cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A161119 Triangle read by rows: T(n,k) is the number of fixed-point-free involutions of {1,2,...,2n} having k cycles with entries of opposite parities (0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 9, 0, 6, 9, 0, 72, 0, 24, 0, 225, 0, 600, 0, 120, 225, 0, 4050, 0, 5400, 0, 720, 0, 11025, 0, 66150, 0, 52920, 0, 5040, 11025, 0, 352800, 0, 1058400, 0, 564480, 0, 40320, 0, 893025, 0, 9525600, 0, 17146080, 0, 6531840, 0, 362880, 893025, 0, 44651250, 0, 238140000, 0, 285768000, 0, 81648000, 0, 3628800
Offset: 0

Views

Author

Emeric Deutsch, Jun 02 2009

Keywords

Comments

T(n,k) is the number of basis elements in the order-n Brauer algebra that have propagation number k. - John M. Campbell, Dec 08 2021

Examples

			T(3,1)=9 because we have (12)(35)(46), (14)(26)(35), (16)(24)(35), (23)(15)(46), (25)(13)(46), (34)(15)(26), (36)(15)(24), (45)(13)(26), (56)(13)(24).
Triangle starts:
  1;
  0,  1;
  1,  0,  2;
  0,  9,  0,  6;
  9,  0, 72,  0, 24;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if `mod`(n-k, 2) = 1 then 0 else binomial(n, k)^2*factorial(k)*(product(2*j-1, j = 1 .. (1/2)*n-(1/2)*k))^2 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
  • PARI
    dfo(n) = if (n<0, (-1)^n/dfo(-n), (2*n)! / n! / 2^n); \\ A001147
    T(n,k) = if ((n-k)%2, 0, k!*binomial(n,k)^2*dfo((n-k)/2)^2);
    row(n) = vector(n+1, k, T(n,k-1)) \\ Michel Marcus, Dec 09 2021

Formula

T(n,k) = k!*binomial(n,k)^2*(n-k-1)!!^2 if n-k is even; T(n,k) = 0 if n-k is odd.
Sum of row n = (2n-1)!! = A001147(n).
T(n,n) = n! = A000142(n).
T(2n,0) = A001818(n).
Sum_{k>=0} k*T(n,k) = n^2*(2n-3)!! = A161120(n).

A161120 Number of cycles with entries of opposite parities in all fixed-point-free involutions of {1,2,...,2n}.

Original entry on oeis.org

0, 1, 4, 27, 240, 2625, 34020, 509355, 8648640, 164189025, 3445942500, 79222218075, 1979900722800, 53443570205025, 1549547301802500, 48028060502296875, 1584712538529120000, 55458748565165570625
Offset: 0

Views

Author

Emeric Deutsch, Jun 02 2009

Keywords

Examples

			a(2)=4 because in the 3 fixed-point-free involutions of {1,2,3,4}, namely (12)(34), (13)(24), (14)(23), we have a total of 4 cycles with entries of opposite parities.
		

Crossrefs

Programs

  • Maple
    seq(n^2*(product(2*j-1, j = 1 .. n-1)), n = 0 .. 18);

Formula

a(n)=n^2*(2n-3)!!
a(n)=Sum(k*A161119(n,k), k=0..n)
E.g.f.: x(1-x)/(1-2x)^(3/2). [From Paul Barry, Sep 13 2010]
E.g.f.: x/2*U(0) where U(k)= 1 + (2*k+1)/(1 - x/(x + (k+1)/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 25 2012
D-finite with recurrence a(n) +(-2*n-1)*a(n-1) +a(n-2) +(-2*n+7)*a(n-3)=0. - R. J. Mathar, Jul 26 2022

A161121 Triangle read by rows: T(n,k) is the number of fixed-point-free involutions of {1,2,...,2n} having k cycles with entries of the same parity (0 <= k <= 2*floor(n/2)).

Original entry on oeis.org

1, 1, 2, 0, 1, 6, 0, 9, 24, 0, 72, 0, 9, 120, 0, 600, 0, 225, 720, 0, 5400, 0, 4050, 0, 225, 5040, 0, 52920, 0, 66150, 0, 11025, 40320, 0, 564480, 0, 1058400, 0, 352800, 0, 11025, 362880, 0, 6531840, 0, 17146080, 0, 9525600, 0, 893025, 3628800, 0, 81648000, 0
Offset: 0

Views

Author

Emeric Deutsch, Jun 02 2009

Keywords

Comments

Row n contains 1 + 2*floor(n/2) terms.
Sum of row n = (2n-1)!! (A001147).
a(n,0) = n! (A000142).
a(2n,2n) = A001818(n).
Sum_{k>=0} k*T(n,k) = n*(n-1)*(2n-3)!! = A161122(n).

Examples

			T(3,2)=9 because we have (12)(35)(46), (14)(26)(35), (16)(24)(35), (23)(15)(46), (25)(13)(46), (34)(15)(26), (36)(15)(24), (45)(13)(26), (56)(13)(24).
Triangle starts:
    1;
    1;
    2,   0,   1;
    6,   0,   9;
   24,   0,  72,   0,   9;
  120,   0, 600,   0, 225;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if n < k then 0 elif `mod`(k, 2) = 0 then binomial(n, k)^2*factorial(n-k)*(product(2*j-1, j = 1 .. (1/2)*k))^2 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. 2*floor((1/2)*n)) end do; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := If[EvenQ[k], (n-k)! Binomial[n, k]^2 ((k-1)!!)^2, 0];
    Table[T[n, k], {n, 0, 10}, {k, 0, 2 Quotient[n, 2]}] // Flatten (* Jean-François Alcover, Feb 01 2023 *)

Formula

T(n,k) = (n-k)!*binomial(n,k)^2*((k-1)!!)^2 if k is even; T(n,k) = 0 if k is odd.
Showing 1-3 of 3 results.