A161152 Positive integers n such that {the number of (non-leading) 0's in the binary representation of n} is coprime to n.
1, 2, 5, 6, 8, 9, 11, 13, 14, 17, 19, 20, 21, 23, 25, 27, 29, 30, 32, 33, 35, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 52, 53, 55, 56, 57, 59, 61, 62, 66, 67, 68, 69, 71, 72, 73, 77, 79, 81, 83, 85, 86, 87, 89, 91, 92, 93, 95, 96, 97, 101, 103, 106, 107, 109, 111, 113, 115
Offset: 1
Examples
13 is in the sequence because the number of non-leading 0 s in the binary representation of 13 is 1 (13_10 = 1101_2) and gcd(1, 13) = 1. - _Indranil Ghosh_, Mar 08 2017
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[115], GCD[DigitCount[#, 2, 0], #] == 1 &] (* Indranil Ghosh, Mar 08 2017 *)
-
PARI
b(n) = if(n<1, 0, b(n\2) + 1 - n%2); for (n=1, 115, if(gcd(b(n),n)==1, print1(n", "))); \\ Indranil Ghosh, Mar 08 2017
-
Python
from math import gcd i=j=1 while j<=100: if gcd(bin(i)[2:].count("0"),i)==1: print(j, i) j+=1 i+=1 # Indranil Ghosh, Mar 08 2017
Extensions
Extended by Ray Chandler, Jun 11 2009
Comments