cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161158 a(n) = A003696(n+1)/A001353(n+1).

Original entry on oeis.org

1, 14, 161, 1792, 19809, 218638, 2412353, 26614784, 293628097, 3239445006, 35739069409, 394290020096, 4349990523425, 47991114171406, 529460241815169, 5841251080892416, 64443392518654337, 710969410782059534
Offset: 0

Views

Author

R. J. Mathar, Jun 03 2009

Keywords

Comments

Proposed by R. Guy in the seqfan list Mar 28 2009.
With an offset of 1, this sequence is the case P1 = 14, P2 = 32, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 27 2014

Crossrefs

Programs

  • GAP
    a:=[1,14,161,1792];; for n in [5..20] do a[n]:=14*a[n-1]-34*a[n-2] +14*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Dec 24 2019
  • Magma
    I:=[1,14,161,1792]; [n le 4 select I[n] else 14*Self(n-1)-34*Self(n-2) +14*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 28 2014
    
  • Maple
    seq(simplify( ChebyshevU(n, (4+sqrt(2))/2)*ChebyshevU(n, (4-sqrt(2))/2) ), n = 0 .. 20); # G. C. Greubel, Dec 24 2019
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-14x+34x^2-14x^3+x^4), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 28 2014 *)
    Table[Simplify[ChebyshevU[n, (4+Sqrt[2])/2]*ChebyshevU[n, (4-Sqrt[2])/2]], {n, 0, 20}] (* G. C. Greubel, Dec 24 2019 *)
  • PARI
    vector(21, n, round(polchebyshev(n-1, 2, (4+sqrt(2))/2)*polchebyshev(n-1, 2, (4-sqrt(2))/2)) ) \\ G. C. Greubel, Dec 24 2019
    
  • Sage
    [round(chebyshev_U(n,(4+sqrt(2))/2)*chebyshev_U(n,(4-sqrt(2))/2)) for n in (0..20)] # G. C. Greubel, Dec 24 2019
    

Formula

a(n) = 14*a(n-1) -34*a(n-2) +14*a(n-3) -a(n-4).
G.f.: (1-x^2)/(1-14*x+34*x^2-14*x^3+x^4).
From Peter Bala, Apr 27 2014: (Start)
The following remarks assume an offset of 1.
a(n) = (1/sqrt(17))*( T(n,(7 + sqrt(17))/2) - T(n,(7 - sqrt(17))/2) ), where T(n,x) is the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n,M), where M is the 2 X 2 matrix [0, -8; 1, 7].
a(n) = U(n-1,1/2*(4 + sqrt(2)))*U(n-1,1/2*(4 - sqrt(2))), where U(n,x) is the Chebyshev polynomial of the second kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)