cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A192344 Constant term of the reduction of n-th polynomial at A161516 by x^2->x+1.

Original entry on oeis.org

1, 0, 5, 4, 49, 108, 637, 2024, 9329, 34104, 143621, 554092, 2255809, 8883876, 35708701, 141734480, 566950433, 2257038576, 9011796293, 35916665428, 143306508433, 571395546204, 2279250017533, 9089366457656, 36253101237521, 144581807030568
Offset: 1

Views

Author

Clark Kimberling, Jun 28 2011

Keywords

Comments

For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first four polynomials at A161516 and their reductions are as follows:
p0(x)=1 -> 1
p1(x)=x -> x
p2(x)=4+x+x^2 -> 5+2x
p3(x)=12x+3x^2+x^3 -> 4+17x.
From these, we read
A192344=(1,0,5,4,...) and A192345=(1,1,2,17...)
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1; d = Sqrt[x + 4];
    p[n_, x_] := ((x + d)^n + (x - d)^n )/
      2 (* polynomials defined at A161516 *)
    Table[Expand[p[n, x]], {n, 0, 4}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
    (* A192344 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
    (* A192345 *)

Formula

Conjecture a(n) = 2*a(n-1)+10*a(n-2)-6*a(n-3)-9*a(n-4). G.f.: -(5*x^2+2*x-1) / (9*x^4+6*x^3-10*x^2-2*x+1). [Colin Barker, Nov 22 2012]

A192345 Constant term of the reduction of n-th polynomial at A161516 by x^2->x+1.

Original entry on oeis.org

0, 1, 2, 17, 48, 245, 850, 3709, 14016, 57817, 225890, 912473, 3610800, 14470637, 57541426, 229912165, 915917568, 3655472497, 14572774850, 58135559777, 231822774960, 924665246117, 3687589909522, 14707675592461, 58656853828800, 233942936910025
Offset: 1

Views

Author

Clark Kimberling, Jun 28 2011

Keywords

Comments

For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			(See A192344.)
		

Crossrefs

Programs

Formula

Empirical G.f.: x^2*(3*x^2+1)/(9*x^4+6*x^3-10*x^2-2*x+1). [Colin Barker, Nov 13 2012]

A192352 Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+1)^n+(x-1)^n) by x^2->x+1.

Original entry on oeis.org

1, 0, 2, 1, 9, 13, 51, 106, 322, 771, 2135, 5401, 14445, 37324, 98514, 256621, 673933, 1760997, 4615823, 12075526, 31628466, 82781215, 216761547, 567428401, 1485645049, 3889310328, 10182603746, 26657986681, 69792188337, 182717232061
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

1

Examples

			For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
The first six polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=1+x^2 -> 2+x
p(3,x)=3x+x^3 -> 1+5x
p(4,x)=1+6x^2+x^4 -> 9+9x
p(5,x)=5x+10x^3+x^5 -> 13+30x.
From these, we read
A192352=(1,0,2,1,9,13...) and A049602=(0,1,1,5,9,30...).
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1; d = 1;
    p[n_, x_] := ((x + d)^n + (x - d)^n )/
      2 (* similar to polynomials defined at A161516 *)
    Table[Expand[p[n, x]], {n, 0, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
      (* A192352 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
      (* A049602 *)

Formula

Empirical G.f.: -x*(x^3-x^2-2*x+1)/((x^2-3*x+1)*(x^2-x-1)). [Colin Barker, Sep 11 2012]

A192346 Constant term of the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.

Original entry on oeis.org

1, 0, 3, 4, 25, 68, 275, 904, 3297, 11400, 40499, 141900, 500697, 1760396, 6200675, 21820432, 76823425, 270407696, 951914403, 3350807700, 11795463001, 41521535700, 146162319603, 514512119704, 1811159622625, 6375545788568, 22442862753875
Offset: 1

Views

Author

Clark Kimberling, Jun 28 2011

Keywords

Comments

To define the polynomials p(n,x), let d=sqrt(x+2); then p(n,x)=(1/2)((x+d)^n+(x-d)^n). These are similar to polynomials at A161516.
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=2+x+x^2 -> 3+2x
p(3,x)=6x+3x^2+x^3 -> 4+11x.
From these, we read
A192346=(1,0,3,4,...) and A192347=(1,1,2,11...)
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1; d = Sqrt[x + 2];
    p[n_, x_] := ((x + d)^n + (x - d)^n )/ 2
    (* similar to polynomials defined at A161516 *)
    Table[Expand[p[n, x]], {n, 0, 4}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
    (* A192346 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
    (* A192347 *)

Formula

Conjecture: a(n) = 2*a(n-1)+6*a(n-2)-2*a(n-3)-a(n-4). G.f.: -x*(x+1)*(3*x-1) / (x^4+2*x^3-6*x^2-2*x+1). [Colin Barker, Jan 17 2013]

A192347 Coefficient of x in the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.

Original entry on oeis.org

0, 1, 2, 11, 32, 125, 418, 1511, 5248, 18601, 65250, 230099, 809248, 2849989, 10030018, 35311375, 124293632, 437545489, 1540200002, 5421774299, 19085364000, 67183428301, 236495292002, 832498651511, 2930516834432, 10315851565625
Offset: 1

Views

Author

Clark Kimberling, Jun 28 2011

Keywords

Comments

To define the polynomials p(n,x), let d=sqrt(x+2); then p(n,x)=(1/2)((x+d)^n+(x-d)^n). These are similar to polynomials at A161516.
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=2+x+x^2 -> 3+2x
p(3,x)=6x+3x^2+x^3 -> 4+11x.
From these, we read
A192346=(1,0,3,4,...) and A192347=(1,1,2,11...)
		

Crossrefs

Programs

Formula

Conjecture: a(n) = 2*a(n-1)+6*a(n-2)-2*a(n-3)-a(n-4). G.f.: x^2*(x^2+1) / (x^4+2*x^3-6*x^2-2*x+1). [Colin Barker, Jan 17 2013]

A192348 Constant term of the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.

Original entry on oeis.org

1, 0, 4, 4, 36, 88, 432, 1408, 5776, 20736, 80320, 297792, 1132096, 4242304, 16028928, 60276736, 227287296, 855703552, 3224482816, 12144337920, 45752574976, 172339107840, 649223532544, 2445572276224, 9212566081536, 34703459811328
Offset: 1

Views

Author

Clark Kimberling, Jun 28 2011

Keywords

Comments

To define the polynomials p(n,x), let d=sqrt(x+3); then p(n,x)=(1/2)((x+d)^n+(x-d)^n). These are similar to polynomials at A161516.
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=3+x+x^2 -> 4+2x
p(3,x)=9x+3x^2+x^3 -> 4+14x.
From these, we read
A192348=(1,0,3,4,...) and A192349=(0,1,2,14...)
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1; d = Sqrt[x + 3];
    p[n_, x_] := ((x + d)^n + (x - d)^n )/
      2 (* similar to polynomials defined at A161516 *)
    Table[Expand[p[n, x]], {n, 0, 4}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
    (* A192348 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
    (* A192349 *)

Formula

Conjecture: a(n) = 2*a(n-1)+8*a(n-2)-4*a(n-3)-4*a(n-4). G.f.: -x*(4*x^2+2*x-1) / (4*x^4+4*x^3-8*x^2-2*x+1). [Colin Barker, Jan 17 2013]

A192349 Coefficient of x in the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.

Original entry on oeis.org

0, 1, 2, 14, 40, 180, 616, 2456, 8960, 34384, 128160, 485728, 1823360, 6882368, 25896064, 97614720, 367575040, 1384954112, 5216465408, 19651804672, 74025216000, 278859191296, 1050447030272, 3957059508224, 14906157629440, 56151566438400
Offset: 1

Views

Author

Clark Kimberling, Jun 28 2011

Keywords

Comments

To define the polynomials p(n,x), let d=sqrt(x+3); then p(n,x)=(1/2)((x+d)^n+(x-d)^n). These are similar to polynomials at A161516. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=3+x+x^2 -> 4+2x
p(3,x)=9x+3x^2+x^3 -> 4+14x.
From these, we read
A192348=(1,0,3,4,...) and A192349=(0,1,2,14...)
		

Crossrefs

Programs

Formula

Conjecture: a(n) = 2*a(n-1)+8*a(n-2)-4*a(n-3)-4*a(n-4). G.f.: x^2*(2*x^2+1) / (4*x^4+4*x^3-8*x^2-2*x+1). [Colin Barker, Jan 17 2013]

A192350 Constant term of the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.

Original entry on oeis.org

1, 0, 6, 4, 64, 128, 896, 2752, 14208, 52224, 238592, 946176, 4110336, 16830464, 71598080, 297140224, 1253048320, 5229707264, 21973303296, 91924463616, 385642135552, 1614916091904, 6770569248768, 28364203098112, 118885634277376
Offset: 1

Views

Author

Clark Kimberling, Jun 28 2011

Keywords

Comments

To define the polynomials p(n,x), let d=sqrt(x+5); then p(n,x)=(1/2)((x+d)^n+(x-d)^n). These are similar to polynomials at A161516.
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=5+x+x^2 -> 6+2x
p(3,x)=15x+3x^2+x^3 -> 4+20x.
From these, we read
A192350=(1,0,6,4,...) and A192351=(0,1,2,20...)
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1; d = Sqrt[x + 5];
    p[n_, x_] := ((x + d)^n + (x - d)^n )/
      2 (* similar to polynomials defined at A161516 *)
    Table[Expand[p[n, x]], {n, 0, 4}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
      (* A192350 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
      (* A192351 *)

Formula

Conjecture: a(n) = 2*a(n-1)+12*a(n-2)-8*a(n-3)-16*a(n-4). G.f.: -x*(6*x^2+2*x-1) / (16*x^4+8*x^3-12*x^2-2*x+1). [Colin Barker, Jan 17 2013]

A192351 Coefficient of x in the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.

Original entry on oeis.org

0, 1, 2, 20, 56, 320, 1120, 5312, 20608, 90880, 368640, 1577984, 6522880, 27578368, 114909184, 483328000, 2020573184, 8480555008, 35502817280, 148874461184, 623609118720, 2614000353280, 10952269365248, 45901678641152, 192340840939520
Offset: 0

Views

Author

Clark Kimberling, Jun 28 2011

Keywords

Comments

To define the polynomials p(n,x), let d=sqrt(x+5); then p(n,x)=(1/2)((x+d)^n+(x-d)^n). These are similar to polynomials at A161516.
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=5+x+x^2 -> 6+2x
p(3,x)=15x+3x^2+x^3 -> 4+20x.
From these, we read
A192350=(1,0,6,4,...) and A192351=(0,1,2,20...)
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = 2*a(n-1)+12*a(n-2)-8*a(n-3)-16*a(n-4),a(0)=0,a(1)=1,a(2)=2,a(3)=20},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Jan 01 2018
  • Mathematica
    (See A192350.)

Formula

Conjecture: a(n) = 2*a(n-1)+12*a(n-2)-8*a(n-3)-16*a(n-4). G.f.: x*(4*x^2+1) / (16*x^4+8*x^3-12*x^2-2*x+1). [Colin Barker, Jan 17 2013]
Confirmation of conjecture by Robert Israel, Jan 01 2018: (Start)
The polynomials p(n,x) have g.f. G(z) = (1-x*z)/(1-2*x*z-5*z^2-x*z^2+x^2*z^2).
The reductions mod x^2-x-1 have g.f. g(z) = (1+x*z-2*z-6*z^2+4*x*z^3)/(1-2*z-12*z^2+8*z^3+16*z^4):
note that the numerator of G(z)-g(z) is divisible by x^2-x-1. (End)

Extensions

Offset corrected by Robert Israel, Jan 01 2018

A192353 Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+2)^n+(x-2)^n) by x^2->x+1.

Original entry on oeis.org

1, 0, 5, 1, 42, 43, 429, 820, 4861, 12597, 58598, 177859, 732825, 2417416, 9358677, 32256553, 120902914, 426440955, 1571649221, 5610955132, 20497829133, 73645557469, 267803779710, 965384509651, 3502058316337, 12646311635088, 45818284122149
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			(See A192352 for a related example.)
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1; d = 2;
    p[n_, x_] := ((x + d)^n + (x - d)^n )/2 (* similar to polynomials defined at A161516 *)
    Table[Expand[p[n, x]], {n, 0, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
    Table[Coefficient[Part[t,n],x,0], {n,1,30}](* A192353 *)
    Table[Coefficient[Part[t,n],x,1], {n,1,30}]  (* A192354 *)

Formula

Empirical G.f.: x*(x^3-4*x^2-2*x+1)/((x^2+3*x+1)*(5*x^2-5*x+1)). [Colin Barker, Sep 11 2012]
Showing 1-10 of 12 results. Next