A192344
Constant term of the reduction of n-th polynomial at A161516 by x^2->x+1.
Original entry on oeis.org
1, 0, 5, 4, 49, 108, 637, 2024, 9329, 34104, 143621, 554092, 2255809, 8883876, 35708701, 141734480, 566950433, 2257038576, 9011796293, 35916665428, 143306508433, 571395546204, 2279250017533, 9089366457656, 36253101237521, 144581807030568
Offset: 1
The first four polynomials at A161516 and their reductions are as follows:
p0(x)=1 -> 1
p1(x)=x -> x
p2(x)=4+x+x^2 -> 5+2x
p3(x)=12x+3x^2+x^3 -> 4+17x.
From these, we read
A192344=(1,0,5,4,...) and A192345=(1,1,2,17...)
-
q[x_] := x + 1; d = Sqrt[x + 4];
p[n_, x_] := ((x + d)^n + (x - d)^n )/
2 (* polynomials defined at A161516 *)
Table[Expand[p[n, x]], {n, 0, 4}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192344 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* A192345 *)
A192345
Constant term of the reduction of n-th polynomial at A161516 by x^2->x+1.
Original entry on oeis.org
0, 1, 2, 17, 48, 245, 850, 3709, 14016, 57817, 225890, 912473, 3610800, 14470637, 57541426, 229912165, 915917568, 3655472497, 14572774850, 58135559777, 231822774960, 924665246117, 3687589909522, 14707675592461, 58656853828800, 233942936910025
Offset: 1
A192352
Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+1)^n+(x-1)^n) by x^2->x+1.
Original entry on oeis.org
1, 0, 2, 1, 9, 13, 51, 106, 322, 771, 2135, 5401, 14445, 37324, 98514, 256621, 673933, 1760997, 4615823, 12075526, 31628466, 82781215, 216761547, 567428401, 1485645049, 3889310328, 10182603746, 26657986681, 69792188337, 182717232061
Offset: 1
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
The first six polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=1+x^2 -> 2+x
p(3,x)=3x+x^3 -> 1+5x
p(4,x)=1+6x^2+x^4 -> 9+9x
p(5,x)=5x+10x^3+x^5 -> 13+30x.
From these, we read
A192352=(1,0,2,1,9,13...) and A049602=(0,1,1,5,9,30...).
-
q[x_] := x + 1; d = 1;
p[n_, x_] := ((x + d)^n + (x - d)^n )/
2 (* similar to polynomials defined at A161516 *)
Table[Expand[p[n, x]], {n, 0, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192352 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* A049602 *)
A192346
Constant term of the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.
Original entry on oeis.org
1, 0, 3, 4, 25, 68, 275, 904, 3297, 11400, 40499, 141900, 500697, 1760396, 6200675, 21820432, 76823425, 270407696, 951914403, 3350807700, 11795463001, 41521535700, 146162319603, 514512119704, 1811159622625, 6375545788568, 22442862753875
Offset: 1
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=2+x+x^2 -> 3+2x
p(3,x)=6x+3x^2+x^3 -> 4+11x.
From these, we read
A192346=(1,0,3,4,...) and A192347=(1,1,2,11...)
-
q[x_] := x + 1; d = Sqrt[x + 2];
p[n_, x_] := ((x + d)^n + (x - d)^n )/ 2
(* similar to polynomials defined at A161516 *)
Table[Expand[p[n, x]], {n, 0, 4}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192346 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* A192347 *)
A192347
Coefficient of x in the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.
Original entry on oeis.org
0, 1, 2, 11, 32, 125, 418, 1511, 5248, 18601, 65250, 230099, 809248, 2849989, 10030018, 35311375, 124293632, 437545489, 1540200002, 5421774299, 19085364000, 67183428301, 236495292002, 832498651511, 2930516834432, 10315851565625
Offset: 1
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=2+x+x^2 -> 3+2x
p(3,x)=6x+3x^2+x^3 -> 4+11x.
From these, we read
A192346=(1,0,3,4,...) and A192347=(1,1,2,11...)
A192348
Constant term of the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.
Original entry on oeis.org
1, 0, 4, 4, 36, 88, 432, 1408, 5776, 20736, 80320, 297792, 1132096, 4242304, 16028928, 60276736, 227287296, 855703552, 3224482816, 12144337920, 45752574976, 172339107840, 649223532544, 2445572276224, 9212566081536, 34703459811328
Offset: 1
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=3+x+x^2 -> 4+2x
p(3,x)=9x+3x^2+x^3 -> 4+14x.
From these, we read
A192348=(1,0,3,4,...) and A192349=(0,1,2,14...)
-
q[x_] := x + 1; d = Sqrt[x + 3];
p[n_, x_] := ((x + d)^n + (x - d)^n )/
2 (* similar to polynomials defined at A161516 *)
Table[Expand[p[n, x]], {n, 0, 4}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192348 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* A192349 *)
A192349
Coefficient of x in the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.
Original entry on oeis.org
0, 1, 2, 14, 40, 180, 616, 2456, 8960, 34384, 128160, 485728, 1823360, 6882368, 25896064, 97614720, 367575040, 1384954112, 5216465408, 19651804672, 74025216000, 278859191296, 1050447030272, 3957059508224, 14906157629440, 56151566438400
Offset: 1
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=3+x+x^2 -> 4+2x
p(3,x)=9x+3x^2+x^3 -> 4+14x.
From these, we read
A192348=(1,0,3,4,...) and A192349=(0,1,2,14...)
A192350
Constant term of the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.
Original entry on oeis.org
1, 0, 6, 4, 64, 128, 896, 2752, 14208, 52224, 238592, 946176, 4110336, 16830464, 71598080, 297140224, 1253048320, 5229707264, 21973303296, 91924463616, 385642135552, 1614916091904, 6770569248768, 28364203098112, 118885634277376
Offset: 1
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=5+x+x^2 -> 6+2x
p(3,x)=15x+3x^2+x^3 -> 4+20x.
From these, we read
A192350=(1,0,6,4,...) and A192351=(0,1,2,20...)
-
q[x_] := x + 1; d = Sqrt[x + 5];
p[n_, x_] := ((x + d)^n + (x - d)^n )/
2 (* similar to polynomials defined at A161516 *)
Table[Expand[p[n, x]], {n, 0, 4}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192350 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* A192351 *)
A192351
Coefficient of x in the reduction (by x^2->x+1) of polynomial p(n,x) identified in Comments.
Original entry on oeis.org
0, 1, 2, 20, 56, 320, 1120, 5312, 20608, 90880, 368640, 1577984, 6522880, 27578368, 114909184, 483328000, 2020573184, 8480555008, 35502817280, 148874461184, 623609118720, 2614000353280, 10952269365248, 45901678641152, 192340840939520
Offset: 0
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=x -> x
p(2,x)=5+x+x^2 -> 6+2x
p(3,x)=15x+3x^2+x^3 -> 4+20x.
From these, we read
A192350=(1,0,6,4,...) and A192351=(0,1,2,20...)
-
f:= gfun:-rectoproc({a(n) = 2*a(n-1)+12*a(n-2)-8*a(n-3)-16*a(n-4),a(0)=0,a(1)=1,a(2)=2,a(3)=20},a(n),remember):
map(f, [$0..50]); # Robert Israel, Jan 01 2018
-
(See A192350.)
A192353
Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+2)^n+(x-2)^n) by x^2->x+1.
Original entry on oeis.org
1, 0, 5, 1, 42, 43, 429, 820, 4861, 12597, 58598, 177859, 732825, 2417416, 9358677, 32256553, 120902914, 426440955, 1571649221, 5610955132, 20497829133, 73645557469, 267803779710, 965384509651, 3502058316337, 12646311635088, 45818284122149
Offset: 1
(See A192352 for a related example.)
-
q[x_] := x + 1; d = 2;
p[n_, x_] := ((x + d)^n + (x - d)^n )/2 (* similar to polynomials defined at A161516 *)
Table[Expand[p[n, x]], {n, 0, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
Table[Coefficient[Part[t,n],x,0], {n,1,30}](* A192353 *)
Table[Coefficient[Part[t,n],x,1], {n,1,30}] (* A192354 *)
Showing 1-10 of 12 results.
Comments