A049602
a(n) = (Fibonacci(2*n)-(-1)^n*Fibonacci(n))/2.
Original entry on oeis.org
0, 1, 1, 5, 9, 30, 68, 195, 483, 1309, 3355, 8900, 23112, 60813, 158717, 416325, 1088661, 2852242, 7463884, 19546175, 51163695, 133962621, 350695511, 918170280, 2403740304, 6293172025, 16475579353, 43133883845, 112925557953
Offset: 0
-
LinearRecurrence[{2,3,-4,1},{0,1,1,5},30] (* Harvey P. Dale, Jul 07 2017 *)
-
a(n)=(fibonacci(2*n)-(-1)^n*fibonacci(n))/2 \\ Charles R Greathouse IV, Oct 07 2015
A192373
Constant term in the reduction of the polynomial p(n,x) defined at A162517 and below in Comments.
Original entry on oeis.org
1, 0, 7, 8, 77, 192, 1043, 3472, 15529, 57792, 240655, 934808, 3789653, 14963328, 60048443, 238578976, 953755537, 3798340224, 15162325975, 60438310184, 241126038941, 961476161856, 3835121918243, 15294304429744, 61000836720313, 243280700771904
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=4+x+3x^2 -> 7+4x
p(3,x)=16x+4x^2+4x^3 -> 8+28x
p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 77+84x.
From these, read A192352=(1,0,7,8,77,...) and A049602=(0,2,4,28,84,...).
-
q[x_] := x + 1; d = Sqrt[x + 4];
p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d) (* A162517 *)
Table[Expand[p[n, x]], {n, 1, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192373 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192374 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192375 *)
A192353
Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+2)^n+(x-2)^n) by x^2->x+1.
Original entry on oeis.org
1, 0, 5, 1, 42, 43, 429, 820, 4861, 12597, 58598, 177859, 732825, 2417416, 9358677, 32256553, 120902914, 426440955, 1571649221, 5610955132, 20497829133, 73645557469, 267803779710, 965384509651, 3502058316337, 12646311635088, 45818284122149
Offset: 1
(See A192352 for a related example.)
-
q[x_] := x + 1; d = 2;
p[n_, x_] := ((x + d)^n + (x - d)^n )/2 (* similar to polynomials defined at A161516 *)
Table[Expand[p[n, x]], {n, 0, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
Table[Coefficient[Part[t,n],x,0], {n,1,30}](* A192353 *)
Table[Coefficient[Part[t,n],x,1], {n,1,30}] (* A192354 *)
A192355
Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+2)^n+(x-2)^n) by x^2->x+2.
Original entry on oeis.org
1, 0, 6, 2, 70, 90, 926, 2002, 13110, 37130, 194446, 640002, 2973350, 10653370, 46333566, 174174002, 730176790, 2820264810, 11582386286, 45425564002, 184414199430, 729520967450, 2942491360606, 11696742970002, 47006639297270, 187367554937290
Offset: 1
(See A192352 for a related example.)
-
[1] cat [(4^n + 2*(-3)^n + 2)/6: n in [1..50]]; // G. C. Greubel, Oct 20 2018
-
q[x_] := x + 2; d = 2;
p[n_, x_] := ((x + d)^n + (x - d)^n )/2 (* similar to polynomials defined at A161516 *)
Table[Expand[p[n, x]], {n, 0, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192355 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* A192356 *)
Join[{1}, Table[(4^n + 2*(-3)^n + 2)/6, {n, 1, 50}]] (* G. C. Greubel, Oct 20 2018 *)
-
for(n=0, 50, print1(if(n==0, 1, (4^n + 2*(-3)^n + 2)/6), ", ")) \\ G. C. Greubel, Oct 20 2018
Showing 1-4 of 4 results.
Comments