cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A049602 a(n) = (Fibonacci(2*n)-(-1)^n*Fibonacci(n))/2.

Original entry on oeis.org

0, 1, 1, 5, 9, 30, 68, 195, 483, 1309, 3355, 8900, 23112, 60813, 158717, 416325, 1088661, 2852242, 7463884, 19546175, 51163695, 133962621, 350695511, 918170280, 2403740304, 6293172025, 16475579353, 43133883845, 112925557953
Offset: 0

Views

Author

Keywords

Comments

A049602 gives the coefficients of x in the reduction of the polynomial p(n,x)=(1/2)((x+1)^n+(x-1)^n) by x^2->x+1. For the constant terms, see A192352. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. - Clark Kimberling, Jun 29 2011

Crossrefs

Cf. A049601.

Programs

Formula

a(n)=Sum{T(2i+1, n-2i-1): i=0, 1, ..., [ (n+1)/2 ]}, array T as in A049600.
Cosh transform of Fibonacci numbers A000045 (or mean of binomial and inverse binomial transforms of A000045). E.g.f.: cosh(x)(2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2). - Paul Barry, May 10 2003
a(n)=sum{k=0..floor(n/2), C(n, 2k)Fib(n-2k)}; - Paul Barry, May 01 2005
a(n)=2a(n-1)+3a(n-2)-4a(n-3)+a(n-4). - Paul Curtz, Jun 16 2008
G.f.: x(1-x)/((1+x-x^2)(1-3x+x^2)); a(n)=sum{k=0..n-1, (-1)^(n-k+1)*F(2k+2)*F(n-k+1)}; - Paul Barry, Jul 11 2008

Extensions

Simpler description from Vladeta Jovovic and Thomas Baruchel, Aug 24 2004
More terms from Paul Curtz, Jun 16 2008

A192373 Constant term in the reduction of the polynomial p(n,x) defined at A162517 and below in Comments.

Original entry on oeis.org

1, 0, 7, 8, 77, 192, 1043, 3472, 15529, 57792, 240655, 934808, 3789653, 14963328, 60048443, 238578976, 953755537, 3798340224, 15162325975, 60438310184, 241126038941, 961476161856, 3835121918243, 15294304429744, 61000836720313, 243280700771904
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

The polynomials are given by p(n,x)=((x+d)^n-(x-d)^n)/(2d), where d=sqrt(x+4).
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=4+x+3x^2 -> 7+4x
p(3,x)=16x+4x^2+4x^3 -> 8+28x
p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 77+84x.
From these, read A192352=(1,0,7,8,77,...) and A049602=(0,2,4,28,84,...).
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1; d = Sqrt[x + 4];
    p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d) (* A162517 *)
    Table[Expand[p[n, x]], {n, 1, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]  (* A192373 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]  (* A192374 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192375 *)

Formula

Conjecture: a(n) = 2*a(n-1)+10*a(n-2)-6*a(n-3)-9*a(n-4). G.f.: -x*(x+1)*(3*x-1) / (9*x^4+6*x^3-10*x^2-2*x+1). - Colin Barker, May 09 2014

A192353 Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+2)^n+(x-2)^n) by x^2->x+1.

Original entry on oeis.org

1, 0, 5, 1, 42, 43, 429, 820, 4861, 12597, 58598, 177859, 732825, 2417416, 9358677, 32256553, 120902914, 426440955, 1571649221, 5610955132, 20497829133, 73645557469, 267803779710, 965384509651, 3502058316337, 12646311635088, 45818284122149
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			(See A192352 for a related example.)
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1; d = 2;
    p[n_, x_] := ((x + d)^n + (x - d)^n )/2 (* similar to polynomials defined at A161516 *)
    Table[Expand[p[n, x]], {n, 0, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
    Table[Coefficient[Part[t,n],x,0], {n,1,30}](* A192353 *)
    Table[Coefficient[Part[t,n],x,1], {n,1,30}]  (* A192354 *)

Formula

Empirical G.f.: x*(x^3-4*x^2-2*x+1)/((x^2+3*x+1)*(5*x^2-5*x+1)). [Colin Barker, Sep 11 2012]

A192355 Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+2)^n+(x-2)^n) by x^2->x+2.

Original entry on oeis.org

1, 0, 6, 2, 70, 90, 926, 2002, 13110, 37130, 194446, 640002, 2973350, 10653370, 46333566, 174174002, 730176790, 2820264810, 11582386286, 45425564002, 184414199430, 729520967450, 2942491360606, 11696742970002, 47006639297270, 187367554937290
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

For an introduction to reductions of polynomials by substitutions such as x^2->x+2, see A192232.
Direct sums can be obtained for A192355 and A192356 in the following way. The polynomials p_{n}(x) can be given in series form by p_{n}(x) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*4*k*x^(n-2*k). For the reduction x^2 -> x+2 then the general form can be seen as x^n -> J_{n}*x + phi_{n}, where J_{n} = A001045(n) are the Jacobsthal numbers and phi_{n} = A078008. The reduction of p_{n}(x) now takes the form p_{n}(x) = x * Sum_{k=0..floor(n/2)} binomial(n,2*k)*4^k*J_{n-2*k} + Sum_{k=0..floor(n/2)} binomial(n,2*k)*4^k*phi_{n-2*k}. Evaluating the series leads to p_{n}(x) = x * (4^n - (-3)^n - 1 + 2^n*delta(n,0))/6 + (4^n + 2*(-3)^n + 2 + 2^n*delta(n,0))/6, where delta(n,k) is the Kronecker delta. - G. C. Greubel, Oct 29 2018

Examples

			(See A192352 for a related example.)
		

Crossrefs

Programs

  • Magma
    [1] cat [(4^n + 2*(-3)^n + 2)/6: n in [1..50]]; // G. C. Greubel, Oct 20 2018
  • Mathematica
    q[x_] := x + 2; d = 2;
    p[n_, x_] := ((x + d)^n + (x - d)^n )/2 (* similar to polynomials defined at A161516 *)
    Table[Expand[p[n, x]], {n, 0, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
      (* A192355 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
      (* A192356 *)
    Join[{1}, Table[(4^n + 2*(-3)^n + 2)/6, {n, 1, 50}]] (* G. C. Greubel, Oct 20 2018 *)
  • PARI
    for(n=0, 50, print1(if(n==0, 1, (4^n + 2*(-3)^n + 2)/6), ", ")) \\ G. C. Greubel, Oct 20 2018
    

Formula

Empirical G.f.: x*(2*x^3-5*x^2-2*x+1)/((x-1)*(3*x+1)*(4*x-1)). - Colin Barker, Sep 12 2012
From G. C. Greubel, Oct 28 2018: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * 4^k * phi_{n-2*k}, where phi_{n} = A078008(n).a(n) = (4^n + 2*(-3)^n + 2 + 2^n*delta(n,0))/6, with delta(n,0) = 1 if n=0, 0 else. (End)
Showing 1-4 of 4 results.