A161553 Table which contains in row n the fundamental Pisano period of the Fibonacci sequence (mod n).
0, 0, 1, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8
Offset: 1
Examples
F(n) mod 1 {0}, F(n) mod 2 {0,1,1}, F(n) mod 3 {0,1,1,2,0,2,2,1}, F(n) mod 4 {0,1,1,2,3,1}, F(n) mod 5 {0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1}, F(n) mod 6 {0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1}, F(n) mod 7 {0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1}, F(n) mod 8 {0,1,1,2,3,5,0,5,5,2,7,1}, F(n) mod 9 {0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1}, F(n) mod 10 {0,1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8, 1,9,0,9,9,8,7,5,2,7,9,6,5,1,6,7,3,0,3,3,6,9,5,4,9,3,2,5,7,2,9,1}.
Links
- Alois P. Heinz, Rows n = 1..200, flattened
- J. D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arithm. 16 (1969) 106-110.
- Wayne Peng, ABC Implies There are Infinitely Many non-Fibonacci-Wieferich Primes - An Application of ABC Conjecture over Number Fields, arXiv:1511.05645 [math.NT], 2015.
- Eric Weisstein's World of Mathematics, Pisano Period.
- Wikipedia, Pisano period.
Programs
-
Mathematica
per[1] = 1; per[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[Fibonacci[k + 1], n] == 1, Return[k]]]; row[n_] := Table[Mod[Fibonacci[k], n], {k, 0, per[n]-1}]; Array[row, 9] // Flatten (* Jean-François Alcover, Oct 30 2018 *)
-
PARI
row(n)={my(L=List([0]), X=Mod([1,1;1,0],n), I=Mod([1,0;0,1],n), M=X); while(M<>I, M*=X; listput(L, lift(M[2,2]))); Vec(L)} \\ Andrew Howroyd, Mar 05 2023
Extensions
Moved into the keyword:tabf category by R. J. Mathar, Oct 04 2009
Comments