cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161553 Table which contains in row n the fundamental Pisano period of the Fibonacci sequence (mod n).

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8
Offset: 1

Views

Author

Alexander Adamchuk, Jun 13 2009

Keywords

Comments

The length of the n-th row (the length of the period) is A001175(n).

Examples

			F(n) mod 1 {0},
F(n) mod 2 {0,1,1},
F(n) mod 3 {0,1,1,2,0,2,2,1},
F(n) mod 4 {0,1,1,2,3,1},
F(n) mod 5 {0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1},
F(n) mod 6 {0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1},
F(n) mod 7 {0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1},
F(n) mod 8 {0,1,1,2,3,5,0,5,5,2,7,1},
F(n) mod 9 {0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1},
F(n) mod 10 {0,1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8, 1,9,0,9,9,8,7,5,2,7,9,6,5,1,6,7,3,0,3,3,6,9,5,4,9,3,2,5,7,2,9,1}.
		

Crossrefs

Main diagonal gives A002708.
Row sums give A214300.

Programs

  • Mathematica
    per[1] = 1; per[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[Fibonacci[k + 1], n] == 1, Return[k]]];
    row[n_] := Table[Mod[Fibonacci[k], n], {k, 0, per[n]-1}];
    Array[row, 9] // Flatten (* Jean-François Alcover, Oct 30 2018 *)
  • PARI
    row(n)={my(L=List([0]), X=Mod([1,1;1,0],n), I=Mod([1,0;0,1],n), M=X); while(M<>I, M*=X; listput(L, lift(M[2,2]))); Vec(L)} \\ Andrew Howroyd, Mar 05 2023

Extensions

Moved into the keyword:tabf category by R. J. Mathar, Oct 04 2009