A005478 Prime Fibonacci numbers.
2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917, 475420437734698220747368027166749382927701417016557193662268716376935476241
Offset: 1
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 89, p. 32, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, Section A3.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..23
- John Brillhart, Peter L. Montgomery and Robert D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comp. 50 (1988), 251-260.
- Chris Caldwell's The Top Twenty, Fibonacci Number.
- Shyam Sunder Gupta, Fabulous Fibonacci Numbers, Lucas Numbers, and Golden Ratio, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 8, 223-274.
- Ron Knott, Mathematics of the Fibonacci Series
- Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
- Eric Weisstein's World of Mathematics, Fibonacci Prime
Crossrefs
Programs
-
Mathematica
Select[Fibonacci[Range[400]], PrimeQ] (* Alonso del Arte, Oct 13 2011 *)
-
PARI
je=[]; for(n=0,400, if(isprime(fibonacci(n)),je=concat(je,fibonacci(n)))); je
-
Python
from itertools import islice from sympy import isprime def A005478_gen(): # generator of terms a, b = 1, 1 while True: if isprime(b): yield b a, b = b, a+b A005478_list = list(islice(A005478_gen(),10)) # Chai Wah Wu, Jun 25 2024
-
Sage
[i for i in fibonacci_xrange(0,10^80) if is_prime(i)] # Bruno Berselli, Jun 26 2014
Formula
Extensions
Sequence corrected by Enoch Haga, Feb 11 2000
One more term from Jason Earls, Jul 12 2001
Comment and proof added by Jonathan Sondow, May 24 2011
Comments